
Magnetostatic Fields

According to Coulomb’s law, any distribution of stationary charge
produces a static electric field (electrostatic field).  The analogous equation
to Coulomb’s law for electric fields is the Biot-Savart law for magnetic
fields.  The Biot-Savart law shows that when charge moves at a constant
rate (direct current - DC), a static magnetic field (magnetostatic field) is
produced.  When the rate of charge movement varies with time (for
example, an alternating current - AC), we find that coupled electric and
magnetic fields are produced (electromagnetic field).

     (Electrostatics)

     (Magnetostatics)

     (Electromagnetics)

Static magnetic fields are also produced by stationary permanent magnets.
When permanent magnets are set in motion such that a time-varying
magnetic field is produced, a time-varying electric field is simultaneously
produced.  A time-varying electric field cannot exist without a
corresponding time-varying magnetic field and vice versa.

All of the previously defined equations related to the electric field
have dual equations related to the magnetic field.  All of the magnetic field
terms in these dual equations have dual units to those electric field terms
in the electric field equations.
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The so-called constitutive equations that relate the electric field to the
electric flux density and the magnetic field to the magnetic flux density are

E - vector electric field (V/m)

D - vector electric flux density (C/m2)

� - total permittivity (F/m)

�r - relative permittivity (unitless)

�o = 8.854×10�12 F/m - free space permittivity

H - vector magnetic field (A/m)

B - vector magnetic flux density (T = Wb/m2)

� - total permeability (H/m)

�r - relative permeability (unitless)

�o = 4�×10�7 H/m - free space permeability

T � Tesla

Wb � Weber

The third constitutive equation is the relationship between current density
and electric field. 

The three medium characteristics (�,�,�) are known as the constitutive
parameters.
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Biot-Savart Law

The Biot-Savart law defines the magnetostatic field produced by a
steady current.  The overall magnetic field produced by an arbitrary vector
line current I (filament, zero cross-section) is expressed as a line integral
of the current.  According to the Biot-Savart law, the differential vector
magnetic field (dH) at the field point P produced by a differential element
of current Idl� is 

or

where

r - vector locating the field point P

r� - vector locating the source point (Idl�)

R = r�r�     (vector from the source point to the field point)

R = �R� = �r�r��    (distance from the source point to the field point)

aR = R/R    (unit vector in the direction of R)

l - unit vector in the direction of the current I at dl�

� - angle between l and aR
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Note that the direction of the magnetic field is given by the direction
of I×R.  For infinite length line currents, the magnetic field direction is
given by the right hand rule.

The scalar and vector forms of the total magnetic field for an
arbitrary line current I (A) are given by

Scalar

Vector
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The scalar and vector forms of the total magnetic field for an arbitrary
surface current K (A/m) are given by

Scalar

Vector

The scalar and vector forms of the total magnetic field for an arbitrary
volume current J (A/m2) are given by

Scalar

Vector

Note that the magnetic field is proportional to the product of the
current and the differential element in each case.  This product is defined
as the current moment and has units of A-m.
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Example (Biot-Savart law / line current)

Determine the magnetic field of a line segment of current lying along
the z-axis extending from z=zA to z =zB.

(Given the field point P, the direction
 direction of a� does not change as z is
 varied along the length of the current)
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Transformation of variable:

Given this general result for the magnetic field of a current segment, we

may apply it to several special cases.

(1) Line current, symmetric about the x-y plane, zA = !zo, zB = zo

If the field point lies in the x-y plane, then

z = 0, RA = RB = Ro = [D2 + zo
2 ]1/2
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(2) Semi-infinite line current, z��(0,�)
zA = 0, zB = �, RA = [�2+z2]1/2, RB = �

If the field point lies in the x-y plane (z = 0),

(3) Infinite line current, z��(��,�)
Wherever the field point is located, the infinite length line
current can be viewed as two semi-infinite line currents.  The
resulting magnetic field is twice that of the semi-infinite length
current segment.

The previous formulas are useful when determining the magnetic field of
a closed current loop made up of straight segments.  The principle of
superposition may be applied to determine the total magnetic field
produced by the loop.  The total magnetic field produced by the loop is the
vector sum of the magnetic field contributions from each current segment.
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Example  (Current loop / straight segments)

Determine the magnetic field at the center of the current loop in the
shape of an equilateral triangle (side length l = 4m) carrying a steady
current of 5A.
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Magnetic Field Due to a Circular Current Loop

The Biot-Savart law can be used to determine the magnetic field at
the center of a circular loop of steady current.

Symmetry of the loop magnetic
field when the field point lies
on the loop axis
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The integrals for the x and y components of the magnetic field are zero.
These field components can be shown to be zero by symmetry.

At the loop center (h=0),

00
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Ampere’s Law

Gauss’s law is the Maxwell equation that relates the electrostatic
field (flux) to the source of the electrostatic field (charge).  Ampere’s law
is the Maxwell equation that relates the magnetostatic field (flux) to the
source of the magnetostatic field (current).  

Ampere’s Law - The line integral of the magnetic field around a
closed path equals the net current enclosed (the current direction is
implied by the direction of the path according to the right hand rule).

Example  (Ampere’s law / infinite-length line current)

Given a infinite-length line current I lying along the z-axis, use
Ampere’s law to determine the magnetic field by integrating the magnetic
field around a circular path of radius � lying in the x-y plane.

From Ampere’s law,

By symmetry, the magnetic field is
uniform on the given path so that

or 

This result agrees with that found using the Biot-Savart law.
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Example (Ampere’s law / magnetic field of a surface current)

Determine the vector magnetic field produced by a uniform ax-
directed surface current covering the x-y plane

Ampere’s law may be applied on the path shown below.  Note that the path
dimensions are defined in terms of arbitrary distances (�y,+y) and (�z,+z)
such that the result is valid for any value of y and z.

To evaluate the Ampere’s law integral, we must first determine the vector
characteristics of the magnetic field.  By symmetry, the magnetic field on
the horizontal segments of the path (� and �) must be uniform.
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Also by symmetry, we can show that the magnetic field above the surface
current is everywhere �ay directed while the magnetic field everywhere
below the surface current is +ay directed.  The overall surface current can
be subdivided into differential lengths (Kody) with each differential length
equivalent to a line current.  For any given field point, and any given line
current, there is always another line current in the opposite direction that
produces a magnetic field component that when added to the magnetic
field component of the original line current, produces only a �ay

component (above) or +ay component (below) of magnetic field.

With only horizontal components of magnetic field, the Ampere’s law
integrals on the vertical paths (� and �) are zero.  The magnetic field on
the horizontal paths (� and �) may be written as

where Ho is a constant (the magnetic field is uniform).  Given the magnetic
field characteristics on the horizontal and vertical paths, the Ampere’s law
integral can be evaluated to determine the magnetic field of the surface
current.
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According to Ampere’s law, this integral is equal to the total current
enclosed by the path.  The total current enclosed is the surface current
located between �y and +y.  Given a uniform surface current, the total
current is the product of the surface current density and the distance (2y)
such that

Given the direction of the integration path, the direction of the enclosed
current is the +ax direction.   From Ampere’s law,

The magnetic field above and below the current sheet is

Note that the magnetic field is independent of the distance x so that the
magnetic field is uniform above and below the surface current.
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Example  (Ampere’s law / Magnetic field in a coaxial transmission line)

The coaxial transmission line shown below carries a total current I in
the +az direction through the inner conductor and in the �az direction
through the inner conductor.  Assume uniform current densities in both
conductors of the coaxial transmission line.  Use Ampere’s law to
determine the magnetic field everywhere.

The uniform vector current densities in the inner and outer conductors of
the coaxial transmission line (Ji and Jo, respectively) are

To determine the magnetic field everywhere, Ampere’s law is applied on
circular paths in the four distinct regions for the coaxial transmission line.
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By symmetry, on all four of the integration paths, the magnetic field is
uniform and has only an a� component.  Thus, for each path, Ampere’s law
reduces to 

or

The magnetic field in each region is proportional to the net current
enclosed by the path.

Within the inner conductor (� < a)  [L1]
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Between the conductors (a < � < b)  [L2]

Within the outer conductor (b < � < c)  [L3]

Outside the outer conductor (�< c)  [L4]
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I

a2π

I

b2π

According to the equations obtained from Ampere’s law, the magnetic
field in the four regions of the coaxial transmission line is

The magnetic field of a single conductor carrying a uniform current density
can be determined from the results of the coaxial transmission line.  With
no outer conductor, the curve for the region between the coaxial
conductors would continue for the single conductor.
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Toroid

Another commonly encountered magnetic energy storage geometry
is the toroid.  A toroid is formed by wrapping a conductor around a ring
of uniform cross-section (typically circular cross-section).

The distance from the center of the ring to the center of the ring cross-
section is defined as the mean radius �o.  Given a circular cross-section of
radius a, if the mean radius is large relative to the radius of the cross
section (�o �a), then the toroid may be viewed as a long solenoid bent into
the shape of a circle (the magnetic field within the toroid may be assumed
to be uniform).  Application of Ampere’s law on the mean radius path
gives
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Solving for the toroid magnetic field yields

where l = 2��o is the equivalent length of the toroid.  The magnetic field
at any point within the toroid is the same as that found at the center of the
long solenoid.  The primary advantage of the toroid over the solenoid is the
confinement of the magnetic field within the toroid as opposed to the
solenoid which produces magnetic fields external to the coil.  Also, the
toroid does not suffer from the end effects (fringing) seen in the solenoid.

Differential Form of Ampere’s Law
(Curl Operator)

The differential form of Ampere’s law may be determined by
applying Ampere’s law to a differential surface.  Given the differential
surface shown below, integration of the magnetic field around the path L
gives
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Dividing the Ampere’s law integral by the differential surface �S and
taking the limit as �S approaches zero defines the x-component of the curl
operator.

To evaluate the Ampere’s law integral needed to define the x-component
of the curl operator, the magnetic field is first defined at the point P.

Expanding the y and z components of the magnetic field in a Taylor series
about the point P gives

For the differential surface �S, the distances (y�yo) and (z�zo) are very
small and the higher order terms may be neglected.  The approximations
for the magnetic field terms are thus

The magnetic field must be evaluated on each of the four segments that
make up the closed path L.  These magnetic field terms are

Dr. Ahmed Abdolkhalig 
The University of Tobruk 
Department of Electrical Engineering 
www.ahmed.ucoz.org

22



The results of the integrals on the four segments are

or

The x-component of the curl operator becomes

The y- and z-components of the curl operator may be determined in a
similar fashion by applying Ampere’s law on differential surfaces that are
normal to the y and z directions, respectively.
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The results for the y- and z-components of the curl operator are

The overall curl operator in rectangular coordinates is

Thus, the differential form of Ampere’s law is

The curl operator can be written in terms of the gradient operator as

which can also be written in determinant form as

The same technique is used to determine the curl operator in
cylindrical and spherical coordinates.  In these cases, we must use
differential surfaces that match the given coordinate system.
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Rectangular Coordinates

Cylindrical Coordinates

Spherical Coordinates
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Example  (Differential form of Ampere’s law)

Given the magnetic field inside and outside a conductor of radius a
carrying a uniform current density (total current = Iout ), show that the
differential form of Ampere’s law yields the current density in both
regions.

From the differential form of Ampere’s law, evaluating the curl (in
cylindrical coordinates) of the magnetic field inside and outside the
conductor should yield the current density inside and outside the
conductor.  The current density inside and outside the conductor is

The curl of the magnetic field in cylindrical coordinates is

Since the magnetic fields for r < a and  r > a have only a� components that
are functions of � only, all terms in the curl expression are zero except the
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first term of the az component.
Application of the curl operator yields

Thus, given the magnetic field everywhere for a particular current
distribution, application of Ampere’s law in differential form (curl of H)
gives the current density that produces the magnetic field.
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Stoke’s Theorem

Stoke’s theorem is a vector identity that defines the transformation
of a line integral of a vector around a closed path into a surface integral
over the surface bounded by that path.   The integrand of the resulting
surface integral is the curl of the vector.

Given a surface S bounded by a path L, the surface can be subdivided
into cells of surface area �Sk bounded by paths Lk.  If we apply Ampere’s
law to each cell and sum the results, the contributions from the internal
paths on adjacent cells cancel.  The net result is the integral of the
magnetic field around the outer path L.

The integrals are related by

or
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Taking the limit as �Sk approaches zero yields

In the limit as �Sk approaches zero, the discrete sum becomes a continuous
sum (an integral).

The term in brackets above is the definition of the curl of H in the
direction normal to the surface S such that

where an is the unit normal to the surface S.  The Ampere’s law integral
above becomes

This integral relationship, shown here in terms of Ampere’s law, is actually
a vector identity which is valid for any vector F and any surface S.

Using Stoke’s theorem, the integral form of Ampere’s law can be directly
transformed into the differential form.
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Applying Stoke’s theorem gives

Since the surface integrals in this equation are valid for any surface S, the
integrands of the two integrals must be equal.  This yields Ampere’s law
in differential form:                   .

Gauss’s Law for Magnetic Fields

Two of the four Maxwell’s equations have been defined thus far:
Gauss’s law (for electric fields) and Ampere’s law.  The third Maxwell’s
equation is Gauss’s law applied to magnetic fields.  The integral and
differential forms of Gauss’s law for magnetic fields can be determined
from the corresponding electric field equations.
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The charge terms on the right hand side of Gauss’s law for magnetic
fields (integral and differential form) are zero since the dual parameter to
electric charge (magnetic charge) does not exist.  The characteristics of
electrostatic and magnetostatic fields are fundamentally different based on
the existence or nonexistence of charge.

   Electrostatic Fields      Magnetostatic Fields

Electric flux lines begin on positive Magnetic flux lines form
charge and end on negative charge.            closed loops

      (Discontinuous)  (Continuous)

Faraday’s Law for Electrostatic Fields

The last of the four Maxwell’s equations is Faraday’s law.  The
general time-varying form of Faraday’s law will be discussed when time-
varying fields are considered.  The electrostatic form of Faraday’s law is
simply a statement of  the conservative nature of the electrostatic field (the
closed line integral of the electrostatic field is zero).

Using Stoke’s theorem, this integral can also be written as

Since the surface integral above is valid for any surface S, the electric field
must satisfy

which is the differential form of Faraday’s law for electrostatic fields.
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Maxwell’s Equations for Static Fields

All four of Maxwell’s equations for static fields have been defined in
both integral form and differential form.  Maxwell’s equations for time-
varying fields contain additional terms which form a complete set of
coupled equations (all four equations must be satisfied simultaneously).
For static fields, Maxwell’s equations de-couple into two sets of two
equations:  two for electrostatic fields and two for magnetostatic fields.
Maxwell’s equations for static fields are:

             Integral form            Differential form

 Static E

 Static H

� Gauss’s law (electric fields)

� Faraday’s law

� Gauss’s law (magnetic fields)

� Ampere’s law

�

�
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Differential Operators in Electromagnetics

The differential form of the governing equations in electromagnetics
(Maxwell’s equations and related equations) are defined in terms of four
different differential operators: the gradient operator, the divergence
operator, the Laplacian operator and the curl operator.  All of these
operators can be defined in terms of the gradient (�) operator.

Operators Involving �

     Operator             Example            Operand         Result

Note that the two operators that operate on vectors (divergence and curl)
are the two operators found in the differential form of Maxwell’s
equations.  Certain characteristics of the vector fields in Maxwell’s
equations can be determined based on the divergence and curl results for
these fields.

Characteristics of F based on ��F

Vectors with nonzero divergence (��F � 0) vary in the
direction of the field.

Vectors with zero divergence (��F = 0) do not vary in the
direction of the field.
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The divergence of a vector F at a point P can be visualized by
enclosing the point with an infinitesimally small differential volume and
examining the flux of the vector in and out of the volume.  If there is a net
flux out of the volume (more flux out of the volume than into the volume),
the divergence of F is positive at the point P.  If there is a net flux into the
volume (more flux into the volume than out the volume), the divergence
of F is negative at the point P.
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If the net flux into the differential volume is zero (the flux into the volume
equals the flux out of the volume), the divergence of F is zero at P.

According to Gauss’s law for electric fields in differential form,

the divergence of the electric flux density is zero in a charge-free region
(�v= 0) and non-zero in a region where charge is present.  Thus, the
divergence of the electric flux density locates the source of the electrostatic
field (net positive charge = net flux out, net negative charge = net flux in).

According to Gauss’s law for magnetic fields in differential form,

the divergence of the magnetic flux density is always zero since there is no
magnetic charge (net flux = 0).

Characteristics of F based on �×F

Vectors with nonzero curl (�×F�0) vary in a direction 	 to
the direction of the field.

Vectors with zero curl (�×F= 0) do not vary in a direction 	
to the direction of the field. 
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The curl of a vector F at a point P can be visualized by inserting a
small paddle wheel into the field (interpreting the vector F as a force field)
and noting if the paddle wheel rotates or not.  If there is an imbalance of
force on the sides of the paddle wheel, the wheel will rotate and the curl of
F is in the direction of the wheel axis (according to the right hand rule).
If the forces on both sides are equal, there is no rotation, and the curl is
zero.  The magnitude of the rotation velocity represents the magnitude of
the curl of F at P.  The curl of the vector field F is therefore a measure of
the circulation of F about the point P.
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According to Ampere’s law in differential form,

the curl of the magnetic field is zero in a current-free region (J = 0) and
non-zero in a region where current is present.  Thus, the curl of the
magnetostatic field locates the source of the field (steady current).

According to Faraday’s law in differential form,

the curl of the electrostatic field is always zero.

Static Fields and Potentials

Fields with zero curl are defined as lamellar or irrotational fields.
All electrostatic fields are lamellar fields.  According to the vector identity,

electrostatic fields can be written as the gradient of some scalar (electric
scalar potential - V).

In a similar fashion, in a current-free region (J=0), the magnetic field is
lamellar (�×H=0) so that the magnetic field may also be written as the
gradient of some scalar.

where Vm is the magnetic scalar potential.

Fields with zero divergence are defined as solenoidal or rotational
fields.  All magnetostatic fields are solenoidal based on Gauss’s law for
magnetic fields.  
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According to the vector identity

magnetostatic fields can be written as the curl of some vector (magnetic
vector potential - A).  Thus, we may write

Inserting the magnetic field expression into the differential form of
Ampere’s law gives

The curl curl operator satisfies the following vector identity:

where the last term in the previous equation is defined as the vector
Laplacian.  The equation defining the magnetic vector potential in terms
of the current density becomes

We are free to choose the characteristics of the vector potential to simplify
the mathematics, so long as the fields defined in terms of A still satisfy
Maxwell’s equations.  If we choose

then the equation for the magnetic vector potential in terms of the current
density becomes

This equation is the vector analogy to Poisson’s equation:
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The solution to the magnetic vector potential differential equation takes the
same form as the solution to the electric scalar potential differential
equation. 

Given the integral for the magnetic vector potential in terms of the current
density, the magnetostatic field can be determined by first evaluating the
integral in terms of the known current density, then differentiating A to
find B according to 

The general 3D integral for the magnetic vector potential in terms of the
volume current density can be simplified for surface or line currents.
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Example  (Vector potential)

Given a magnetic vector potential of 

determine (a.) the vector magnetic flux density B and (b.) the total
magnetic flux �m passing through a square loop defined by (0<x<�), (0<y<�)
and z=0.

(a.)

(b.)
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