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Magnetostatic Fields

According to Coulomb’s law, any distribution of stationary charge
producesastatic electricfield (electrostatic field). Theanal ogousequation
to Coulomb’s law for eectric fields is the Biot-Savart law for magnetic
fiedlds. The Biot-Savart law shows that when charge moves at a constant
rate (direct current - DC), a static magnetic field (magnetostatic field) is
produced. When the rate of charge movement varies with time (for
example, an alternating current - AC), we find that coupled eectric and
magnetic fields are produced (electromagnetic field).

Stationary Static :
Charge ’ ElectricFidd | (F/&Crosaics)
Steady Static Magnetic :
Current - Field (Magnetostatics)

Time-varying ; Dynamic Electric

Current and Magnetic Fields (Electromagnetics)

Static magnetic fieldsare al so produced by stationary permanent magnets.
When permanent magnets are set in motion such that a time-varying
magnetic field isproduced, atime-varying electric field is simultaneously
produced. A time-varying electric field cannot exist without a
corresponding time-varying magnetic field and vice versa.

All of the previously defined equations related to the electric field
have dual equationsrelated to the magneticfield. All of themagneticfield
termsin these dual equations have dual units to those electric field terms
in the electric field equations.
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Theso-called constitutive equationsthat relatetheeectricfieldtothe
electric flux density and themagnetic field to the magnetic flux density are

D=€¢F = ereoE

E - vector eectric fidd (V/m)

D - vector electric flux density (C/m?)
€ - total permittivity (F/m)

€, - relative permittivity (unitless)

€, = 8.854x10 2 F/m - free space permittivity

B=pH=ppu H

H - vector magnetic field (A/m)

B - vector magnetic flux density (T =Wb/m?)
W - total permeability (H/m)

W, - relative permeability (unitless)

L, = 41 x10 " H/m - free space permeability

T = Teda
Wb = Weber

Thethird constitutive equation is the relationship between current density
and electric field.
J=0FE

The three medium characteristics (u,€,0) are known as the constitutive
parameters.
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Biot-Savart L aw

The Biot-Savart law defines the magnetostatic field produced by a
steady current. Theoverall magnetic field produced by an arbitrary vector
line current | (filament, zero cross-section) is expressed as aline integral
of the current. According to the Biot-Savart law, the differential vector
magnetic field (dH) at thefield point P produced by adifferential € ement
of current I1dl “is

7 dl’
Ix '
dH = Rl
ATR?
_ IXR dl/ y
4mR3 ©
’ dH (inward)
or zu X
dH - Isina dl’
ATR?
where

r - vector locating the field point P

r' - vector locating the source point (1dl’)

R=r-r" (vector from the source point to the field point)

R=|R| =|r-r’| (distancefrom the source point tothefield point)
az = R/R (unit vector in the direction of R)

| - unit vector in the direction of the current | at dI’

o - angle between | and ag
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Note that the direction of the magnetic field is given by thedirection
of I xR. For infinite length line currents, the magnetic field direction is

given by the right hand rule.

out

The scalar and vector forms of the total magnetic field for an
arbitrary line current | (A) are given by

Scalar
B - I fsmadl,
4t ) R?
L
Vector
Ixa
H - lf R =1 fIXRdl’
4nL R? 4nL R3
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The scalar and vector forms of the total magnetic field for an arbitrary
surface current K (A/m) are given by

Scalar

4n ff Ksma o

H-—ff e ff

The scalar and vector forms of the total magnetic field for an arbitrary
volume current J (A/m?) are given by

Scalar

e ] o

H-—fff R

Note that the magnetic field is proportional to the product of the
current and the differential element in each case. This product is defined
as the current moment and has units of A-m.

Idl! < Kds' o  Jdv’ ( current moment)



Dr. Ahmed Abdolkhalig

The University of Tobruk
Department of Electrical Engineering
www.ahmed.ucoz.org

Example (Biot-Savart law / line current)

Determinethe magnetic field of aline segment of current lying along
the z-axis extending from z=z, to z=z,.

R=r-r

=pa,+(z-z")a,
R=|r-r|

=\/p?+(z-z'Y

/
/
/
/
/
=
Ly

1 pUa)x[pay+(z-z)a,]
H = 41 f [p2+(Z_Z/)2]3/2 dz

_ 1 f lp a¢ dz’
T . [p2+(Z—Z/)2]3/2

! P a, f dz’ (Given the field point P, the direction
direction of a, doesnot changeaszis

IN273/2 & g
[p?+(z-z')] varied along the length of the current)
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Transformation of variable:

let o=z-2z' do. = -dz’
Z/=ZA = o=z ZA
Z/=ZB = 06=Z—ZB
z-z,
Ipa _ Ipay o
f (o2 +p)3/2 An | p?(a?+p*)'?
z-z,

] Z-Zg z-z,
= - - a
Amp | [p2+(z-2," 1 [p?+(z-2, 71" *
zZ—Z zZ~—Z
_ 4 B a,
4mp| R, R,

Given this genera result for the magnetic field of a current segment, we
may apply it to several special cases.

(1) Linecurrent, symmetric about the x-y plane, z, = -z, z; = z,

+ f—
ZZO ZZo

R, Ry

1
4mp

H = a,

If the field point liesin the x-y plane, then

z=0,R,=Rs=R, = [p2+202]1/2
2z Iz
H = 41 2= - a,
TPLTe ] 2mpyptez]
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2,=0,z5=>,R, = [p2+22]1/2’ Rg = o

Z—ZB Z—ZB

= lim 2 21172
B = [p +(Z_ZB) ]

lim
- 00 .R

Zp

= -1
= lim B = -1
Zp > 00 1/2
B p_2+(Z_ZB)2
2 2
Zp Zp
HE=¥;=1+ 2 a,
4tp /p2+22

If the field point liesin the x-y plane (z = 0),

1
4Tp

H =

ag,

(3) Infiniteline current, z'c (o, «)
Wherever the field point is located, the infinite length line
current can be viewed as two semi-infinite line currents. The
resulting magnetic field istwicethat of the semi-infinitelength
current segment.

.H=2=I=a¢: !
4p 2Tp

ag,

The previous formulas are useful when determining the magnetic field of
a closed current loop made up of straight segments. The principle of
superposition may be applied to determine the total magnetic field
produced by theloop. Thetotal magnetic field produced by theloop isthe
vector sum of the magnetic field contributionsfrom each current segment.

8
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Determine the magnetic field at the center of the current loop in the
shape of an equilateral triangle (side length | = 4m) carrying a steady
current of 5A.

X
tan30° = a4
/2
d=(1/2)tan30° =2tan30° = 1.155m
Iz, z =1/2=2m
Hsegment - (_az) °
2np‘/p2+22 p:d:1155m
5)(2

Htotal - 3IIsegment =3 ( )( ) (_az)

21(1.155)y/ 1.155% +22
= -1.79a_(A/m)
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The Biot-Savart law can be used to determine the magnetic field at
the center of acircular loop of steady current.

-1 fIXRdl/

B 3
4 ; R
dHZLi\ JH I=1ay
, /_ /
P=(0,0.n) & di’=add
dHP r=ha,
/ _
z' R=r-r r-ad,
r /
R=r-r
a N =ha,-aa

Symmetry of theloop magnetic
field when the field point lies
on the loop axis

10
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* (Ia,) x(ha,-aa,) wd’

I f
/

27T

ha +aa

:prza/
41T 0(a2+h2fﬂ

_ / Y
a, = cosd'a_+sin¢ a,

0 0

2T 27 27
H la haxfco ¢'ddp’ + hayfsi?b/d¢/+ aa, fa’d)’
0

4n(a2+h2fﬂ A A

The integrals for the x and y components of the magnetic field are zero.
These field components can be shown to be zero by symmetry.

H = la [Znaaz]
4n(a2+h2fﬂ
_ Ia?
2(a2+h2fﬂ z
At the loop center (h=0),
H = é a

11
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Gauss's law is the Maxwell equation that relates the electrostatic
field (flux) to the source of the electrostatic field (charge). Ampere' slaw
Is the Maxwell equation that relates the magnetostatic field (flux) to the
source of the magnetostatic field (current).

# D-ds=0 (Gauss’s law - integral form)
f H-dl=1 (Ampere’s law - integral form)

Ampere’'s Law - The line integral of the magnetic field around a
closed path equals the net current enclosed (the current direction is
implied by the direction of the path according to theright hand rule).

Example (Ampere'slaw / infinite-length line current)

Given a infinite-length line current | lying along the z-axis, use
Ampere slaw to determine the magnetic field by integrating the magnetic
field around a circular path of radius p lying in the x-y plane.

From Ampere's law,

z
H-dl=¢Hdl =1
3@ dl f ol /A
L L
By symmetry, the magnetic field is
uniform on the given path so that —
L
H”@dz:Hq)(znp):l X
L
or
I
H =
¢ 2Tp

This result agrees with that found using the Biot-Savart law.

12
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Determine the vector magnetic field produced by a uniform a,-
directed surface current covering the x-y plane

Ampere slaw may be applied on the path shown below. Notethat thepath
dimensionsaredefined in termsof arbitrary distances (-y,+y) and (- z,+2)
such that the result is valid for any value of y and z

zZ
®
K=K, a,
N | fo 7
® X v
@
y Yy

H-dl=| H-d H-dl H -dl H-dl=1
f £ +£ +£ +£ enclosed

To evaluate the Ampere’ slaw integral, we must first determine the vector
characteristics of the magnetic field. By symmetry, the magnetic field on
the horizontal segments of the path (@ and @) must be uniform.

13



Dr. Ahmed Abdolkhalig

The University of Tobruk
Department of Electrical Engineering
www.ahmed.ucoz.org

Also by symmetry, we can show that the magnetic field above the surface
current is everywhere -a, directed while the magnetic field everywhere
below the surface current is +a, directed. The overall surface current can
be subdivided into differential lengths (K, dy) with each differential length
equivalent to aline current. For any given field point, and any given line
current, there is always another line current in the opposite direction that
produces a magnetic field component that when added to the magnetic
field component of the origina line current, produces only a -a,
component (above) or +a, component (below) of magnetic field.

With only horizontal components of magnetic field, the Ampere's law
integrals on the vertical paths (0 and ®) are zero. The magnetic field on
the horizontal paths (@ and @) may be written as

{ -H,a, (z>0)
|H,a, (z<0)
whereH_isaconstant (the magnetic fieldisuniform). Giventhe magnetic
field characteristics on the horizontal and vertical paths, the Ampere’ slaw

integral can be evaluated to determine the magnetic field of the surface
current.

14
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<] = “al + )
g

-y ty
= [(-H,a) (-dy)(-a,) + [ H,a,) ()@,
+y v

-y +y
= —Hofdy+Hofdy
+y -y

= -H (-2y)+H (2y) = H (4y)

According to Ampere's law, this integral is equal to the total current
enclosed by the path. The total current enclosed is the surface current
located between -y and +y. Given a uniform surface current, the total
current is the product of the surface current density and the distance (2y)
such that

Ienclosed = Ko(zy )

Given the direction of the integration path, the direction of the enclosed
current isthe +a, direction. From Ampere's law,
KO

2

o

fHdl = Ho(4y) = Ienclosed = Ko(zy) = H, =
L

The magnetic field above and below the current sheet is

r

K
-—a, (z>0)

KO
Tay (z<0)

Note that the magnetic field is independent of the distance x so that the
magnetic field is uniform above and below the surface current.

15
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The coaxial transmission line shown below carriesatotal current | in
the +a, direction through the inner conductor and in the -a, direction
through the inner conductor. Assume uniform current densities in both
conductors of the coaxia transmission line. Use Ampere's law to
determine the magnetic field everywhere.

The uniform vector current densitiesin the inner and outer conductors of
the coaxial transmission line (J; and J,, respectively) are

inner I I
conductor Ji=—a.= 2 47 Jia,
A, Ta
outer I, _ I _
conductor JO_A_O( @)= n(c2-b?) a,=-J,a,

To determine the magnetic field everywhere, Ampere’ s law is applied on
circular pathsinthefour distinct regionsfor the coaxial transmission line.
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L, (p<a) [region within the inner conductor ]
L, (a<p<b) [region between the conductors ]

L, (b<p<c) [region within the outer conductor ]
L, (p>c) [region outside the outer conductor ]

By symmetry, on all four of the integration paths, the magnetic field is
uniformand hasonly an a, component. Thus, for each path, Ampere’ slaw
reducesto

$H-dl = § Hydl=Hy § dl=Hy(2TP) = Lppeeg
L L L

or

H. = Ienclosed H = Ienclosea’ a

¢ 2T 2T ¢

The magnetic field in each region is proportional to the net current
enclosed by the path.

Within the inner conductor (p <a) [L,]

L™ [[ 75 [ 0 s =, [ ds =550

)i 2
= (np?) =12
na a
- Ienclosea’ a¢ _ [p2 g - lp a¢ (p<a)
2np 2npa’ 2na’

17
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Between the conductors (a<p <b) [L,]

I —

enclosed ~
I
H = enclosed aq) _ 1 a¢ (a< o <b)
2T 2T

Within the outer conductor (b<p <c) [L;]

Lciosea =1+ [ T-ds =1+ [[ (-J,a,)(dsa,) =1, [[ d

p2_b2
=1- [n(p*-b*)]1=11-
n(cz—bz) c?-b?
I 2 32
H-= encloseda :# 1 - P b a (b<p<C)
271p ¢ 271p ct-p? ¢

Outside the outer conductor (p<c) [L,]

1

enclosed

=1+(-1)=0

H = Ienclosea’
2T

aq,:O (p>c)

18
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A
H ¢(P)
o
2ma Coaxial transmission line
Single wire
(no outer conductor)
i N
27b N
| | | >
a b c P

According to the equations obtained from Ampere's law, the magnetic
field in the four regions of the coaxial transmission lineis

Ip
H = a (p<a)
2na? ?
H--1 4 (a<p<b)
2T ¢
2_ 1.2
A b a, (b<p<c)
np c?-b?
H=0 (p>c)

Themagneticfield of asingle conductor carrying auniform current density
can be determined from the results of the coaxial transmission line. With
no outer conductor, the curve for the region between the coaxial
conductors would continue for the single conductor.

19
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Toroid

Another commonly encountered magnetic energy storage geometry
isthetoroid. A toroid isformed by wrapping a conductor around aring
of uniform cross-section (typically circular cross-section).

The distance from the center of the ring to the center of the ring cross-
section isdefined asthemean radius p,. Givenacircular cross-section of
radius a, if the mean radius is large relative to the radius of the cross
section (p, > a), then thetoroid may be viewed asalong solenoid bent into
the shape of acircle (the magnetic field within the toroid may be assumed
to be uniform). Application of Ampere's law on the mean radius path
gives

fH-dl = qu,dz =H, fdz: Hy(27p,) =1, 1000 = NI
L L L

20
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Solving for the toroid magnetic field yields

_ NI _ N
2np,

H,

wherel = 2np, isthe equivalent length of the toroid. The magnetic field
at any point within the toroid is the same as that found at the center of the
long solenoid. The primary advantage of thetoroid over the solenoid isthe
confinement of the magnetic field within the toroid as opposed to the
solenoid which produces magnetic fields external to the coil. Also, the
toroid does not suffer from the end effects (fringing) seen in the solenoid.

Differential Form of Ampere’'sLaw
(Curl Operator)

The differential form of Ampere's law may be determined by
applying Ampere's law to a differential surface. Given the differential
surface shown below, integration of the magnetic field around the path L
gives

Az

AS=AyAz T

P=(0,y,,z, 7

X

fH dl = Ienclosea’ = JxAS
L

21
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Dividing the Ampere's law integral by the differential surface AS and
taking thelimit as ASapproaches zero defines the x-component of the curl
operator.

fH-dl )

a: curl H = lim
AS-0

X

To evaluate the Ampere' s law integral needed to define the x-component
of the curl operator, the magnetic field isfirst defined at the point P.

H(P)=H _a, +Hy0ay +H a,

Expanding they and zcomponents of the magnetic field in a Taylor series
about the point P gives

oH 0H (Z—ZO)2
H(z)=H_ +—>(z-z,)+—2 + ...
Y Y oz oz 2 2!

oH, GZHZ (y —yo)2
Hz(y):HZO+ (y_y0)+ 2 +"'

For the differential surface AS, the distances (y-y,) and (z-z) are very
small and the higher order terms may be neglected. The approximations
for the magnetic field terms are thus

oH,
Hy(z) ~H P (z-z,)

OH,
H((y)~H_+ y-y,)
dy

The magnetic field must be evaluated on each of the four segments that
make up the closed path L. These magnetic field terms are

22
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OH Az
On @© H(0)~H -—>*==
y() o 0z 2
oH
On®  H(Ay)~H +- 258
dy 2
OH Az
On ® H(Az)~H +—2*==
y( ) o 0z 2
oH
On @ H(0)~H - zAY
dy 2

The results of the integrals on the four segments are

oH Az- oH Az-
H-dl+(H-dl=\H -—2Y2%\Ay-|H +—_2Y22A
f f Y8z 2 Y Yo 9z 2 Y
@ ® . - .
OH A+ OH Ao |
[H-as[ma-H,+" =2 A g - " B A
dy 2 dy 2
@ @ . - .
or
0H, OH 0H, oH
fH*dlz - Y| AyAz = -V IAS
dy 0Oz dy Oz

The x-component of the curl operator becomes

$H-dl  (9H oH
a_ = -—Yla_=Ja

(a_curlH)a_= lim = —= a_
dy Oz

As-0 AS O F

The y- and z-components of the curl operator may be determined in a
similar fashion by applying Ampere’ slaw on differential surfacesthat are
normal to they and z directions, respectively.

23
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| 0H, OH,
(ay°cur1H)ay= P - = a,=Ja,
OH oH
(a,culH)a =| —>-—|a_=J.a,
x Oy

The overall curl operator in rectangular coordinatesis

OH, oH OH_ OH OH, OH,
curl H = f-—2la_+ ad ‘la + Y a,
dy Oz Y

Tay

Tax

=J a_+ Jyay +Ja, =J
Thus, the differential form of Ampere' slaw is

curlH =J

The curl operator can be written in terms of the gradient operator as

curlH =V xH = ia +ia +iaz ><[Hxax+Hyay+Hzaz]

ox * dy ¥ oz

which can also be written in determinant form as

a, a, a,
d a9 o0
VxH=|—— — —
ox oy oz
H H,6 H,

The same technique is used to determine the curl operator in
cylindrical and spherical coordinates. In these cases, we must use
differential surfaces that match the given coordinate system.

24
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Rectangular Coordinates

VxH =

ayT

Cylindrical Coordinates

1 0H O0H oH oJ0H
VxH=|—-—~2-—%1qg +| £
pdb oz )P Loz op) ®
1| 0
| Z(p )——"]az
p(ap ¥ 9
Spherical Coordinates
o0H
VxH = 1 a(chsinﬁ)—=0 a,
rsin@ | 00 od
oH
+i _1 r—i(qu)) a,
r\ sinO op or
1| 9 H,
+—| —(rHy)- a
r(ar( o) 86) b

25
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Example (Differential form of Ampere’ s law)

Given the magnetic field inside and outside a conductor of radius a
carrying a uniform current density (total current = I ,,), show that the
differential form of Ampere’s law yields the current density in both

regions.
H, = e a, (p<a)
)
1
H = a >a
o= 2mp % (p>a)

From the differential form of Ampere’'s law, evaluating the curl (in
cylindrical coordinates) of the magnetic field inside and outside the
conductor should yield the current density inside and outside the
conductor. The current density inside and outside the conductor is

J_:;

1
Ta?

J,=0 (p>a)

a, (p<a)

The curl of the magnetic field in cylindrical coordinatesis

| OH, GHJ (aH oH,
a, " - )

db oz 9z ap

con 1

{500 2
p PHy b )

Sincethe magnetic fieldsfor r <aand r >ahaveonly a, components that
arefunctions of p only, all termsin the curl expression are zero except the

26



Dr. Ahmed Abdolkhalig
The University of Tobruk

Department of Electrical Engineering

www.ahmed.ucoz.org

first term of the a, component.
Application of the curl operator yields

VXH:L

I
A

0
—(pH a
p(ap(p "’))

( 2
ii Ip a, (p<a)
popl\2wa?
1 0 (1
— —|——a >a

L p Op 2n) ‘ (p>a)
1
—( )(2p)az (p<a)
p
1
=( (p>a)
p
—a,=J,  (p<a)
Ta?

| 0a, =J, (p>a)

Thus, given the magnetic field everywhere for a particular current
distribution, application of Ampere' s law in differential form (curl of H)
gives the current density that produces the magnetic field.

27
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Stoke's Theorem

Soke' s theorem is a vector identity that defines the transformation
of alineintegral of a vector around a closed path into a surface integral
over the surface bounded by that path. The integrand of the resulting
surface integral isthe curl of the vector.

Given asurface Sbounded by apath L, the surface can be subdivided
into cells of surface area AS, bounded by pathsL,. If we apply Ampere's
law to each cell and sum the results, the contributions from the internal
paths on adjacent cells cancel. The net result is the integral of the
magnetic field around the outer path L.

|
1
|
1
s
1 3 1 k
4
1
4
1

Theintegrals are related by
fHdl = E fHdl = Ienclosea’
L k L,
or
f H-dl
L

H -dl = i AS, =1
f zk: - A Sk k enclosed

28
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Taking thelimit as AS, approaches zero yields

| H-dl-
f

fH dl = E AlSikIElo k ASk - lenclosed
7 C AS,

Inthelimit as AS, approacheszero, thediscrete sum becomesacontinuous

sum (an integral).
zkj{ }Askzéf{ }ds

The term in brackets above is the definition of the curl of H in the
direction normal to the surface S such that

fH-dl
A{s*l:?o b =(VxH) a,
AS,

where a, is the unit normal to the surface S. The Ampere's law integral
above becomes

$H dl = [[(V<H)ds =1,
L S

Thisintegral relationship, shown hereintermsof Ampere slaw, isactually
avector identity which isvalid for any vector F and any surface S.

fF-dl:ff(VXF)-ds (Stoke’s theorem)
1 s

Using Stoke' s theorem, the integral form of Ampere’ slaw can be directly
transformed into the differential form.

29



Dr. Ahmed Abdolkhalig

The University of Tobruk
Department of Electrical Engineering
www.ahmed.ucoz.org

fHdl =1 pctosed = ffJ*ds
I S

Applying Stoke' s theorem gives
H-dl=[| (VxH)-ds=[| J-d.
frra ffoemaffra

Sincethe surfaceintegralsin this equation are valid for any surface S, the
integrands of the two integrals must be equal. Thisyields Ampere's law
in differential fornV xH = J

Gauss'sLaw for Magnetic Fields

Two of the four Maxwell’s equations have been defined thus far:
Gauss's law (for electric fields) and Ampere'slaw. Thethird Maxwell’s
equation is Gauss's law applied to magnetic fields. The integral and
differential forms of Gauss's law for magnetic fields can be determined
from the corresponding eectric field equations.

Electric fields Magnetic fields
D=€eE B=-yH
Gauss’s Law - electric fields ~ Gauss’s Law - magnetic fields
(integral form) (integral form)

# D-ds = Q,, 10504 # B-ds =0
S S

Gauss’s Law - electric fields ~ Gauss’s Law - magnetic fields
(differential form) (differential form)

V-D=p, V-B=0
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fields (integral and differential form) are zero since the dual parameter to
electric charge (magnetic charge) does not exist. The characteristics of
el ectrostatic and magnetostatic fieldsarefundamentally different based on
the existence or nonexistence of charge.

Electrostatic Fields Magnetostatic Fields
Electric flux lines begin on positive  Magnetic flux lines form
charge and end on negative charge. closed loops

(Discontinuous) (Continuous)

Faraday’s Law for Electrostatic Fields

The last of the four Maxwell’s equations is Faraday’s law. The
general time-varying form of Faraday’slaw will be discussed when time-
varying fields are considered. The electrostatic form of Faraday’slaw is
smply astatement of the conservative nature of the electrostatic field (the
closed lineintegral of the electrostatic field is zero).

L Faraday’s law - integral form
f E-di=0 ( electrostatic fields
I

Using Stoke' s theorem, thisintegral can also be written as

E-dl=([(VXE)ds=0
fra-ffo-era

Sincethesurfaceintegral aboveisvalid for any surface S, theeectricfield
must satisfy

UxE =0 Faraday’s law - differential form
electrostatic fields

which isthe differential form of Faraday’s law for electrostatic fields.
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All four of Maxwell’ sequationsfor static fieldshave been definedin
both integral form and differential form. Maxwell’s equations for time-
varying fields contain additional terms which form a complete set of
coupled equations (all four equations must be satisfied simultaneousdly).
For static fields, Maxwell’s equations de-couple into two sets of two
equations. two for eectrostatic fields and two for magnetostatic fields.
Maxwell’ s equations for static fields are;

Integral form Differential form

ffD°ds B ff Py = Q,ciosea V-D=p, ®
Static E § 4

fE-ds:O VxE =0 ®

L

[[B-ds=0 V-B=0 @
Static H SHdl o o

al = as = x H =
f £f enclosed

Gauss' s law (electric fields)
Faraday’s law

Gauss' s law (magnetic fields)

® © ©

Ampere'slaw
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Thedifferential form of the governing equationsin electromagnetics
(Maxwell’ s equations and related equations) are defined in terms of four
different differential operators. the gradient operator, the divergence
operator, the Laplacian operator and the curl operator. All of these
operators can be defined in terms of the gradient (V) operator.

Operators Involving V

Operator Example Operand Result
Gradient VV=-E scalar vector
Divergence V-D=p, vector scalar
Laplacian V2p = —% scalar scalar
Curl VxH=J vector vector

Note that the two operators that operate on vectors (divergence and curl)
are the two operators found in the differential form of Maxwell’'s
equations. Certain characteristics of the vector fields in Maxwell’s
eguations can be determined based on the divergence and curl results for
these fields.

Characteristics of F based on V-F

Vectors with nonzero divergence (V-F = 0) vary in the
direction of thefield.

Vectors with zero divergence (V-F = 0) do not vary in the
direction of thefield.
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The divergence of a vector F at a point P can be visualized by
enclosing the point with an infinitessmally small differential volume and
examining the flux of the vector in and out of thevolume. If thereisanet
flux out of thevolume (moreflux out of the volume than into the volume),
thedivergenceof F ispositive at the point P. If thereisanet flux into the
volume (more flux into the volume than out the volume), the divergence
of F is negative at the point P.

(V-F),>0 (V-F),<0

AN
e

> o <

Y
> —> > <« <« <«
> —> > <« <« <

P P
> —> e » F <« «—o<«<—F
> —> > <« <« <
> —> > <« <« <«
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(V-F), =0
> > > >
> > —> —>»
P P
> o > F > o > F
> > —> —>
— —> —> >

According to Gauss' s law for eectric fields in differential form,
V-D=p,
the divergence of the electric flux density is zero in a charge-free region
(p,=0) and non-zero in a region where charge is present. Thus, the
divergenceof theelectric flux density locatesthe source of theelectrostatic

field (net positive charge = net flux out, net negative charge = net flux in).
According to Gauss's law for magnetic fieldsin differential form,

V-B=0

the divergence of the magnetic flux density isalways zero sincethereisno
magnetic charge (net flux = 0).

Characteristics of F based on VXF

Vectors with nonzero curl (VxF #0) vary in adirection 1 to
the direction of the field.

Vectors with zero curl (VxF=0) do not vary in adirection
to the direction of the field.

36



Dr. Ahmed Abdolkhalig

The University of Tobruk
Department of Electrical Engineering
www.ahmed.ucoz.org

The curl of avector F at apoint P can be visualized by inserting a
small paddlewhed intothefield (interpreting the vector F asaforcefield)
and noting if the paddle whedl rotates or not. If thereis an imbalance of
force on the sides of the paddle wheel, the wheel will rotate and the curl of
F isin the direction of the wheel axis (according to the right hand rule).
If the forces on both sides are equal, there is no rotation, and the curl is
zero. The magnitude of the rotation velocity represents the magnitude of
thecurl of F at P. The curl of the vector field F is therefore a measure of
the circulation of F about the point P.

(VxF),~ out (VxF)p~in
< < > >
<« < -, >
<« <« o > L > L
—> —> < <«
—> > <« <«
> > < <
(VxF),=0 (VxF),=0
— —> > —> >
—> > > >
—> ¢ —>»F > —> e > F
— ——> > —> >
— —> > —> >
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According to Ampere’ slaw in differential form,
VxH=J

the curl of the magnetic field is zero in a current-free region (J =0) and

non-zero in a region where current is present. Thus, the curl of the

magnetostatic field locates the source of the field (steady current).
According to Faraday’s law in differential form,

VXxE =0

the curl of the eectrostatic field is always zero.

Static Fields and Potentials

Fields with zero curl are defined as lamellar or irrotational fields.
All electrostaticfieldsarelamélar fields. According tothevector identity,

VxVf=0

electrostatic fields can be written as the gradient of some scalar (electric
scalar potential - V).

E=-VV
In asimilar fashion, in a current-free region (J=0), the magnetic field is

lamellar (VxH =0) so that the magnetic field may also be written as the
gradient of some scalar.

H=-VV_
where V,, is the magnetic scalar potential.
Fields with zero divergence are defined as solenoidal or rotational

fields. All magnetostatic fields are solenoidal based on Gauss's law for
magnetic fields.

V-B=0
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According to the vector identity
V-(VxF)=0
magnetostatic fields can be written as the curl of some vector (magnetic
vector potential - A). Thus, we may write
1

V-B=0 = B=pH=VxA = H=-Vx4
K

Inserting the magnetic field expression into the differential form of
Ampere'slaw gives
VxH=J = VX(leA) =J = VxVxA=uJ
K

The curl curl operator satisfies the following vector identity:
VxVxF=V(V-F)-V*F
where the last term in the previous equation is defined as the vector

Laplacian. The equation defining the magnetic vector potential in terms
of the current density becomes

V(V-A)-V24A=pJ

We arefreeto choose the characteristics of the vector potential to simplify
the mathematics, so long as the fields defined in terms of A still satisfy
Maxwell’s equations. If we choose

V:A=0
then the equation for the magnetic vector potential in terms of the current
density becomes
V24 =-pJ
This equation is the vector analogy to Poisson’ s equation:

V2y = _i
€
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Thesolution to themagnetic vector potential differential equationtakesthe
same form as the solution to the electric scalar potential differential
equation.

1 P, ) J
V=4n€f£f|r_r,|dv’ - A_ﬁw“_ﬂ'd‘u

Given theintegral for the magnetic vector potential in terms of the current
density, the magnetostatic field can be determined by first evaluating the
integral in terms of the known current density, then differentiating A to
find B according to

B=VxA

The general 3D integral for the magnetic vector potential in terms of the
volume current density can be simplified for surface or line currents.

J
4=F ' volume currents
I )

A4="F f f LS (surface currents)
47 < |r—r/|

A4="F I ar (line currents)
47 7 |r—r/|
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Example (Vector potential)
Given amagnetic vector potential of

A =e*cosya_+(1+sinx)a, (Wb/m)

determine (a.) the vector magnetic flux density B and (b.) the total
magnetic flux Y, passing through asquareloop defined by (O<x<m), (0%)

and z=0.
(@) B=VxA
04. 04 04. 04 04 04
= z-_J a -+ X _ il a + Y ad a
dy o0z ) * oz ox ) ? ox dy ) °

=[(-e"%cosy) —(cosx)]ay +[-(-e“siny)]a,

= -(e"*cosy + cosx)a +(esiny)a,  (Wb/m?)

)
¥ = ([B-d
e

=ﬁ32(z:0)dxdy

00

(b.

TT

=f (siny)dxdy
00

=[x ][-cosy ]
0 0

=n[1-(-1)] =27 = 628 Wb
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