
Chapter 2
System Modelling

2.1 Introduction

If the dynamic behavior of a physical system can be represented by an equa-
tion, or a set of equations, this is referred to as the mathematical model of
the system. Such models can be constructed from knowledge of the physical
characteristics of the system, i.e. mass for a mechanical system or resistance for
an electrical system. Because the systems under consideration are dynamic in
nature, the descriptive equations are usually differential equations. Differential
equations are often the initial description of a system. The variables are just
the inputs and outputs. If the differential equations can be linearized, then the
Laplace transform can be utilized to simplify the method of solution. a single-
input single-output process is described by its transfer function: the ratio of the
Laplace transform of output and input.

2.2 The Laplace transform

The Laplace transform is a very powerful analysis tool for a certain class
of systems, namely, linear time-invariant systems. It transforms the problem
from the time (or t) domain to the Laplace (or s) domain. The advantage in
doing this is that complex time-domain differential equations become relatively
simple s-domain algebraic equations. It is then possible to manipulate the
algebraic equation by simple algebraic rules to obtain the solution in the s-
domain. When a suitable solution is arrived at, it is inverse transformed back
to the time-domain.

2.2.1 Definition

The Laplace transform of a function of time f(t), 0 ≤ t ≤ ∞ with f(t) = 0 for
t ≤ 0 is defined as

F (s) = L [f(t)] =

∫ ∞
0

f(t)e−stdt (2.1)

where s is a complex variable s = σ + jω and is called the laplace operator.
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12 CHAPTER 2. SYSTEM MODELLING

Let f(t) be a unit step function defined as f(t) = 1 for t ≥ 0.Example 2.1

� Solution The Laplace transform of f(t) is obtained as

F (s) =

∫ ∞
0

e−stdt = −1

s
e−st

∣∣∣∣∞
0

=
1

s
�

Consider the exponential function f(t) = e−at for t ≥ 0.Example 2.2

� Solution The Laplace transform of f(t) is

F (s) =

∫ ∞
0

e−ate−stdt = −e
−(s+a)t

s+ a

∣∣∣∣∞
0

=
1

s+ a
�

2.2.2 Properties

The application of the Laplace transform in many instances is simplified by
utilization of the properties of the transform. These properties are presented
here, for which no proofs are given.

Linearity

L[k1f1(t)± k2f2(t)] = k1F1(s)± k2F2(s)

Differentiation

L
[
df(t)

dt

]
= sF (s)− f(0)

where f(0) is the limit of f(t) as t approaches 0. In general, for higher-order
derivatives of f(t),

L
[
dnf(t)

dtn

]
= snF (s)− sn−1f(0)− sn−2f (1)(0)− · · · − f (n−1)(0)

where f (i)(0) denotes the ith-order derivative of f(t) with respect to t, evaluated
at t = 0.

Integration

L
[∫ t

0

f(τ)dτ

]
=
F (s)

s

Shift in time

L[f(t− T )] = e−TsF (s) for T ≥ 0

Shift in frequency

L[e∓αtf(t)] = F (s± α)
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2.2. THE LAPLACE TRANSFORM 13

Covolution

L[f1(t) ∗ f2(t)] = F1(s)F2(s)

2.2.3 Theorems

Initial value theorem

A useful property of the Laplace transform known as the initial value theorem
which states that it is always possible to determine the initial value of the time
function f(t) from its Lapalce transform. We may state the theorem in this
way:

lim
t→0

f(t) = lim
s→∞

sF (s)

Final value theorem [More on this property later]

A second valuable Laplace transform theorem is the final value theorem, it
allows us to compute the constant steady-state value of a time function given
its Laplace transform.

lim
t→∞

f(t) = lim
s→0

sF (s)

2.2.4 More examples

In this section more examples are given to demonstrate the utilization of the
Laplace transform properties. For the subjects treated in this course, the direct
evaluation of the Lapalce transform integral is almost never used.

Find the Laplace transform of f(t) = cosωt. [Linearity property] Example 2.3

� Solution The Laplace transform is

F (s) =

∫ ∞
0

(cosωt)e−stdt

We substitute the relation

cosωt =
1

2
(ejωt + e−jωt)

into the integral, we find that

F (s) =
1

2

(
1

s− jω

)
+

1

2

(
1

s+ jω

)
=

s

s2 + ω2
�

Find the Laplace transform of f(t) =
d2f

dt2
. [Differentiation property] Example 2.4

� Solution The Laplace transform is

F (s) = s2F (s)− sf(0)− df

dt

∣∣∣∣
t=0

�
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14 CHAPTER 2. SYSTEM MODELLING

Find the Laplace transform of f(t) = e−αt cosωt. [Shifting in frequency]Example 2.5

� Solution From Example 2.3 we know that

L[cosωt] =
s

s2 + ω2

=⇒ L[e−αt cosωt] =
s+ α

(s+ α)2 + ω2
�

Table 2.1: Common Laplace transform pairs

Time function f(t) Laplace transform L[f(t)] = F (s)

1. unit impulse δ(t) 1

2. unit step u(t)
1

s

3. unit ramp t
1

s2

4. tn
n!

sn+1

5. e−at 1

s+ a

6. tne−at n!

(s+ a)n+1

7. sinωt
ω

s2 + ω2

8. cosωt
s

s2 + ω2

9. e−at sinωt
ω

(s+ a)2 + ω2

10. e−at cosωt
s+ a

(s+ a)2 + ω2

2.2.5 Inverse Laplace transform

The inverse transform of a function of s is given by the integral

f(t) = L−1[F (s)] =
1

2πj

∫ σ+jω

σ−jω
F (s)estds

In general, this expression is difficult to evaluate. In practice, inverse transfor-
mation is most easily achieved by using partial fractions to break down solutions
into standard components, and then use tables of Laplace transform pairs, as
given in Table 2.1.

2.2.6 Partial fraction expansion

A rational function F (s) can be written as

F (s) =
Q(s)

P (s)

4

Dr. Ahmed Abdolkhalig 
The University of Tobruk 
Department of Electrical Engineering 
www.ahmed.ucoz.org

Ahmed Abdolkhalig
Pencil



2.2. THE LAPLACE TRANSFORM 15

where P (s) and Q(s) are polynomials of s. Rational functions are defined as the
ratio of two polynomials. It is assumed that the order of P (s) in s is greater
than that of Q(s), F (s) is said to be strictly proper. The polynomial P (s) may
be written

P (s) = sn + an−1s
n−1 + · · ·+ a1s+ a0

where a0, a1, · · · , an−1 are real coefficients. The roots of the polynomial P (s)
are referred to as poles of the function F (s).

Case 1: F (s) has distinct real poles

If all the poles of F (s) are real but distinct, F (s) can be written as

F (s) =
Q(s)

P (s)
=

Q(s)

(s+ s1)(s+ s2) · · · (s+ sn)

which can be rewritten as a partial-fraction expansion

F (s) =
K1

s+ s1
+

K2

s+ s2
+ · · ·+ Kn

s+ sn

To be able to determine the coefficients Ki (i = 1, 2, · · · , n) we use the so-called
cover-up method

Ki = (s+ si)F (s)

∣∣∣∣
s=−si

Find the inverse Laplace transform of Example 2.6

F (s) =
s+ 2

s3 + 4s2 + 3s

� Solution We may write F (s) as

F (s) =
s+ 2

s(s+ 1)(s+ 3)

and in terms of its partial-fraction expansion:

F (s) =
K1

s
+

K2

s+ 1
+

K3

s+ 3

Using the cover-up method, we get

K1 = sF (s)

∣∣∣∣
s=0

=
s+ 2

(s+ 1)(s+ 3)

∣∣∣∣
s=0

=
2

3

In a similar fashion

K2 = (s+ 1)F (s)

∣∣∣∣
s=−1

=
s+ 2

s(s+ 3)

∣∣∣∣
s=−1

= −1

2

and

K3 = (s+ 3)F (s)

∣∣∣∣
s=−3

=
s+ 2

s(s+ 1)

∣∣∣∣
s=−3

= −1

6

With the partial fraction the solution can be looked up in the tables at once to
be

f(t) =
2

3
− 1

2
e−t − 1

6
e−3t �
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16 CHAPTER 2. SYSTEM MODELLING

Case 2: F (s) has distinct complex poles

We have to take special care of the quadratic factors in the denominator. The
numerator of the quadratic factor is chosen to be first-order as shown in the
following example.

Find the inverse Laplace transform ofExample 2.7

F (s) =
1

s(s2 + s+ 1)

� Solution We rewrite F (s) as

F (s) =
K1

s
+
K2s+K3

s2 + s+ 1

Using the cover-up method, we find K1 to be

K1 = sF (s)

∣∣∣∣
s=0

= 1

We equate the numerators,

(s2 + s+ 1) + (K2s+K3)s = 1

After equating like powers of s on the two sides of this equation, we find that
K2 = −1 and K3 = −1. To make it more suitable for using the tables we use
the method of completing the squares to rewrite the partial fraction as

F (s) =
1

s
−

s+ 1
2 + 1

2

(s+ 1
2 )2 + 3

4

From the tables we have,

f(t) = 1− e−t/2 cos
√

3
4 t−

1√
3
e−t/2 sin

√
3
4 t

Case 3: F (s) has multiple-order poles

If r of the n poles of F (s) are identical, or we say that the pole at s = −si is of
muliplicity r, F (s) is written

F (s) =
Q(s)

P (s)
=

Q(s)

(s+ s1)(s+ s2) · · · (s+ sn−r)(s+ si)r

(i 6= 1, 2, · · · , n− r). Then F (s) can be expanded as

F (s) =
K1

s+ s1
+

K2

s+ s2
+ · · ·+ Kn−r

s+ sn−r︸ ︷︷ ︸
n− r terms of distinct poles

+
A1

s+ si
+

A2

(s+ si)2
+ · · ·+ Ar

(s+ si)r︸ ︷︷ ︸
r terms of repeated poles

The (n − r) coefficients, K1, K2, · · · ,Kn−r, which corresponds to the distinct
poles, may be evaluated by the cover-up method. In, general, we may compute
Ak for a factor with multiplicity r as

Ar−k =
1

k!

dk

dsk

[
(s+ si)

rF (s)

]∣∣∣∣
s=−si

k = 0, 1, · · · , r − 1
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2.3. TRANSFER FUNCTIONS 17

Find the inverse Laplace transform of Example 2.8

F (s) =
1

s(s+ 1)3(s+ 2)

� Solution We rewrite the partial fraction as

F (s) =
K1

s
+

K2

s+ 2
+

A1

s+ 1
+

A2

(s+ 1)2
+

A3

(s+ 1)3

The coefficients corresponding to the distinct poles are

K1 = sF (s)

∣∣∣∣
s=0

=
1

2

K2 = (s+ 2)F (s)

∣∣∣∣
s=−2

=
1

2

and those of the third-order pole are

A3 = (s+ 1)3F (s)

∣∣∣∣
s=−1

= −1

A2 =
d

ds

[
(s+ 1)3F (s)

]∣∣∣∣
s=−1

= 0

A1 =
1

2!

d2

ds2

[
(s+ 1)3F (s)

]∣∣∣∣
s=−1

= −1

The completed partial-fraction expansion is

F (s) =
1

2s
+

1

2(s+ 2)
− 1

s+ 1
− 1

(s+ 1)3

The function f(t) is

f(t) =
1

2
+

1

2
e−2t − e−t − 1

2
t2e−t �

2.3 Transfer Functions

The classical way of modelling linear time-invariant systems is to use trans-
fer functions to represent input-output relations between variables. A transfer
function is nothing more than the s plane representation of a physical system
that can be described by an ordinary differential equation with constant coeffi-
cients.

The transfer function of a linear time-invariant system is the ratio of the Laplace
transform of the output to the Laplace transform of the input, with all initial
conditions assumed to be zero

H(s) =
Y (s)

X(s)

The transfer function of a system represents the relationship describing the dy-
namics of the system under consideration. Another way of defining the transfer
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18 CHAPTER 2. SYSTEM MODELLING

Figure 2.1: The transfer function.

function is to use the impulse response. The transfer function of a linear time-
invariant systems is defined as the Laplace transform of the impulse response,
with all initial conditions set to zero

H(s) = L[h(t)] =
Y (s)

X(s)

Find the transfer function of the system described by the following differentialExample 2.9
equation:

d2y

dt2
+ 3

dy

dt
+ 2y = 5

with initial conditions

• y(0) = 4 and ẏ(0) = 3

� Solution Take Laplace transform and set all initial conditions to zero

s2Y (s) + 3sY (s) + 2Y (s) =
5

s

Y (s) =
5

s(s2 + 3s+ 2)

which can be rearranged as a ratio of the output to the input

H(s) =
Y (s)

(5/s)
=

1

s2 + 3s+ 2
�

2.4 Models of Electric Circuits

In this section we develop models for simple electrical circuits. We know
that for a resistor, the voltage-current relationship in the time domain is

v(t) = Ri(t)

8

Dr. Ahmed Abdolkhalig 
The University of Tobruk 
Department of Electrical Engineering 
www.ahmed.ucoz.org

Ahmed Abdolkhalig
Pencil



2.4. MODELS OF ELECTRIC CIRCUITS 19

Figure 2.2: Time-domain and s-domain representation of passive elements under
zero initial conditions.

Taking Laplace transform, we get

V (s) = RI(s)

For an inductor,

v(t) = L
di(t)

dt

Taking Laplace and assuming zero initial conditions

V (s) = sLI(s)

For a capacitor,

i(t) = C
dv(t)

dt

which transforms into the s-domain (assuming zero initial conditions) as

V (s) =
1

sC
I(s)

The s-domain equivalents are shown in Figure 2.2.

Determine the transfer function H(s) = Vo(s)/Io(s) for the circuit shown inExample 2.10

9
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20 CHAPTER 2. SYSTEM MODELLING

Figure 2.3: For Example 2.10.

Figure 2.3.

� Solution By current division,

I2 =
(s+ 4)Io

s+ 4 + 2 + 1
2s

But

Vo = 2I2 =
2(s+ 4)Io

s+ 6 + 1
2s

Hence,

H(s) =
Vo(s)

Io(s)
=

4s(s+ 4)

2s2 + 12s+ 1
�

For the circuit shown in Figure 2.4, find the transfer function I2(s)/V(s).Example 2.11

Figure 2.4: Two loop network for Example 2.11.

� Solution The first step in the solution is to convert the network into Laplace
transform for impedance and circuit variables, assuming zero initial conditions,
as shown in Figure 2.5. The circuit requires two simultaneous equations to
solve for the transfer function. These equations can be found by summing volt-
ages around each mesh through which the assumed currents I1(s) and I2(s) flow.

Around Mesh 1,
R1I1(s) + LsI1(s)− LsI2(s) = V (s)

10
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2.5. MODELS OF MECHANICAL SYSTEMS 21

Figure 2.5: s-domain representation of the circuit in Figure 2.4.

Around Mesh 2,

LsI2(s) +R2I2(s) +
1

Cs
I2(s)− LsI1(s) = 0

By solving the two equations, we get

H(s) =
I2(s)

V (s)
=

LCs2

(R1 +R2)LCs2 + (R1R2C + L)s+R1

as shown in Figure 2.6. �

Figure 2.6: The transfer function.

2.5 Models of mechanical systems

We have shown that electrical networks can be modeled by transfer function
that algebraically relates the Laplace transform of the output to the Laplace
transform of the input. Now, we will do the same for mechanical systems.

The motion of mechanical elements can be described in various dimensions as
translational, rotational, or combined. The equations governing the motion of
mechanical systems are often formulated directly or indirectly from Newton’s
laws of motion.

Mechanical systems require one or more differential equations, called the equa-
tions of motion, to describe it. We will begin by assuming a positive direction of
motion, for example, to the right. This assumed positive direction of motion is
similar to assuming a current direction in an electrical loop. Using our assumed
direction of positive motion, we first draw a free-body diagram, placing on the
body all forces that act on the body either in the direction of motion or opposite
to it. Next, we use Newton?s law to form a differential equation of motion by
summing the forces and setting the sum equal to zero. Finally, assuming zero
initial conditions, we take the Laplace transform of the differential equation,
separate the variables and arrive at the transfer function.

11
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22 CHAPTER 2. SYSTEM MODELLING

2.5.1 Translational motion

The motion of translation is defined as a motion that takes place along straight
lines. The variables that are used to describe translational motion are acceler-
ation, velocity, and displacement. Newton’s law states that the algebraic sum
of forces acting on a rigid body in a given direction is equal to the product
of the mass of the body and its acceleration in the same direction. Table 2.2
shows force-displacement translational relationship for spring, viscous damper
and mass. the constants K, B, and M are called spring constant, coefficient of
viscous friction, and mass, respectively.

Table 2.2: Force displacement translational relationship for spring, viscous damper
and mass.

Component Force-displacement

B

f(t) = M
d2x(t)

dt2

f(t) = B
dx(t)

dt

f(t) = Kx(t)

Find the transfer function X(s)/F(s) for the system shown in Figure 2.7(a).Example 2.12

1

Ms2 +Bs+K

B

Figure 2.7: (a) Mass, spring and damper system; (b) block diagram.
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2.5. MODELS OF MECHANICAL SYSTEMS 23

� Solution Begin the solution by assuming a positive direction of motion.
Then, draw the free-body diagram as shown in Figure 2.8(a). Place on the
mass all forces felt by the mass. Only the applied force points to the right;
all other forces impede the motion and act to oppose it. Hence, the spring,
viscous damper and the mass due to acceleration point to the left. We write

B B

Figure 2.8: (a) Free-body diagram of mass, spring and damper system; (b) trans-
formed free-body diagram (in s domain).

the differential equation of motion using Newton’s law to sum to zero all of the
forces shown on the mass in Figure 2.8(a):

M
d2x(t)

dt2
+B

dx(t)

dt
+Kx(t) = f(t)

Taking the Laplace transform, assuming zero initial conditions,

Ms2X(s) +BsX(s) +KX(s) = F (s)

which is represented in Figure 2.8(b). Solving for the transfer function yields

H(s) =
X(s)

F (s)
=

1

Ms2 +Bs+K

which is represented in Figure 2.7(b). �

2.5.2 Rotational motion

Rotational mechanical systems are handled the same way as translational me-
chanical systems, except that torque replaces force and angular displacement
replaces translational displacement. The mechanical components for rotational
systems are the same as those for translational systems, except that the compo-
nents undergo rotation instead of translation. The rotational motion of a body
can be defined as motion about a fixed axis. The extension of Newton’s law
of motion for rotational motion states that the algebraic sum of moments or
torque about a fixed axis is equal to the applied angular force or the product
of the inertia and the angular acceleration about the axis. Table 2.3 shows the
components along with the relationships between torque and angular velocity,
as well as angular displacement.
The constants K, D (or sometimes denoted as B) and J are called spring con-
stant, coefficient of viscous friction, and moment of inertia, respectively.

The rotational system shown in Figure 2.9 consists of a disk mounted on aExample 2.13
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24 CHAPTER 2. SYSTEM MODELLING

Table 2.3: Torqur-angular displacement relationship for spring, viscous damper and
inertia.

Component Torque-angular displacement

shaft that is fixed at one end. The moment of inertia of the disk about the axis
of rotation is J . The edge of the disk is riding on the surface, and the viscous
friction coefficient between the two surfaces is B. The inertia of the shaft is
negligible, but the torsional spring constant is K. Assume the torque is applied
to the disk, as shown; then the torque or moment of equation about the axis of
the shaft is written from the free-body diagram of Figure 2.9(b) as

T (t) = J
d2θ(t)

dt2
+B

dθ(t)

dt
+Kθ(t) � (2.2)

Figure 2.9: Rotational system for Example 2.13.
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2.6. DC MOTORS IN CONTROL SYSTEMS 25

2.6 DC motors in control systems

A common actuator in control systems is a DC motor. A motor is an elec-
tromechanical component that yields a displacement output for a voltage input.
We will derive the transfer function for one particular kind of electromechanical
system, the armature-controlled dc servomotor. The motor’s schematic is shown
in Figure 2.10

Figure 2.10: A DC motor schematic.

The armature-controlled DC motor uses the armature current ia as the control
variable. In our analysis we need to include the back emf for the electrical cir-
cuit. For the mechanical part of the system we need to include the motor torque
in analyzing the rotor. Since the armature is rotating in a magnetic field, a back
electromotive force1 (back emf), e, is generated

e = Keθ̇m (2.3)

where Ke is a constant of proprtionality called the back emf constant and θ̇m =
ωm is the angular velocity of the motor. Taking the Laplace transform we have

E(s) = Kesθ(s) (2.4)

The relationship among the armature current ia, the applied armature voltage
va, and the back emf e is found by writing a loop equation around the Laplace
transformed armature circuit:

RaIa(s) + LasIa(s) + E(s) = Va(s) (2.5)

The torque developed by the motor is proprtional to the armature current, thus

Tm(s) = KmIa(s) (2.6)

where Tm is the torque developed by the motor and Km is a constant of pro-
portionality, called the motor-torque constant. Rearranging Equation (2.14)
yields

Ia(s) =
Tm(s)

Km
(2.7)

1Because the generated electromotive force (emf) works against the applied armature volt-
age, we call it the back emf.
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26 CHAPTER 2. SYSTEM MODELLING

To find the transfer function of the motor, we first substitute Equation (2.12)
and Equation (2.7) into Equation (2.13), yielding

(Ra + Las)Tm(s)

Km
+Kesθ(s) = Va(s) (2.8)

Now we must find Tm(s) in terms of θm(s) if we are to seperate the input

and output variables, and to obtain the transfer function θm(s)
Va(s) . The free-body

diagram for the rotor, shown in Figure 2.10, defines the positive direction and
shows the two applied torques, T and bθ̇m. Therefore,

(Jms
2 + bs)θm(s) = Tm(s) (2.9)

Substituting Equation (2.9) into Equation (2.8) yiields

(Ra + Las)(Jms
2 + bs)θm(s)

Km
+Kesθ(s) = Va(s) (2.10)

If we assume that the armature inductance La is small compared to the armature
resistance Ra, which is usually the case for a dc motor, Equation (2.10) becomes[

Ra(Jms+ b)

Km
+Ke

]
sθm(s) = Va(s)

After simplification, the desired transfer function θm(s)
Va(s) is found to be

θm(s)

Va(s)
=

Km

s [Ra(Jms+ b) +KmKe]

=
Km

s [JmRas+ bRa +KmKe]

The relations of the armature-controlled DC motor are shown schematically in
Figure 2.11

Figure 2.11: Armature-controlled DC motor.

2.7 System modelling diagrams

2.7.1 The block diagram

Block diagrams may be considered as a form of system description that pro-
vides a simplified overview schematic diagram of a system. It describes the
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2.7. SYSTEM MODELLING DIAGRAMS 27

composition and interconnection of a system, or it can be used together with
the transfer functions to describe the cause-and-effect relationships throughout
the system. The transfer function of each component is placed in a box, and
the input-output relationships between components are indicated by lines and
arrows. We can then solve the equations by graphical simplification, which is
often easier and more informative than algebraic manipulation.

Many practical control systems consist of complicated interconnection of smaller
subsystems. Before tackling a control system design for such systems, it is usu-
ally helpful to simplify the complex interconnection of subsystems. Essentially,
we seek a systematic way to eliminate variables (signals) we do not want to
control or measure.

Block diagram algebra

Block diagrams usually consist of (see Figure 2.12):

1. Blocks: these give a description of subsystem dynamics.

2. Summers: add or subtract two or more signals.

3. Arrows: these give the direction of signal propagation.

4. Take off points.

Take off pointSumming point

Figure 2.12: Block diagram of a closed-loop system.

Block diagram transformations and reduction techniques are derived by con-
sidering the algebra of the diagram variables. For example, consider the block
diagram shown in Figure 2.12. This negative feedback control system is de-
scribed by the equation for the error signal, which is

E(s) = R(s)−B(s) = R(s)−H(s)Y (s)

Because the output is related to the error signal by G(s), we have

Y (s) = G(s)E(s)

thus,
Y (s) = G(s)[R(s)−H(s)Y (s)]

Solving for Y (s), we obtain

Y (s)[1 +G(s)H(s)] = G(s)R(s)
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28 CHAPTER 2. SYSTEM MODELLING

Therefore, the transfer function relating the output Y (s) to the input R(s) is

Y (s)

R(s)
=

G(s)

1 +G(s)H(s)

The gain of a single-loop negative feedback system is given by the forward gain
divided by the sum of one plus the loop gain. When the feedback is added in-
stead of subtracted, we call it positive feedback. In this case the gain is given by
the forward gain divided by the sum of 1 minus the loop gain.

A control system may have several feedback control loops as the one shown
in Figure 2.13. In principle, the block diagram of a closed-loop system, no mat-
ter how complicated it is, it can be reduced to the standard single loop form
shown in Figure 2.12. Reduction of complex block diagrams is facilitated by a
series of easily derivable transformations which are summarized in Table 2.4.

Figure 2.13: Block diagram of a closed-loop system.

The following steps may be used to simplify complicated block diagrams:

1. Combine all cascade blocks.

2. Combine all parallel blocks.

3. Eliminate all minor (interior) feedback loops.

4. Shift summing points to left.

5. Shift take off points to the right.

6. Repeat steps 1 to 5 if necessary.

Block diagram transformations will be illustrated by examples using block dia-
gram reduction.
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2.7. SYSTEM MODELLING DIAGRAMS 29

A block diagram of a multiple-loop feedback control system is shown in Figure Example 2.14
2.13. It is interesting to note that the feedback signal H1(s)Y (s) is a positive
feedback signal, and the loop G3(s)G4(s)H1(s) is a positive feedback loop. First,
to eliminate the minor loop G3G4H4, we move H2 behind block G4 by using
rule 10 (see Table 2.4), and therefore obtain Figure 2.14.

Figure 2.14: Block diagram reduction of the system of Figure 2.13.

Eliminating the loop G3G4H1 by using rule 4, we obtain Fogure 2.15.

Figure 2.15: Block diagram simplification.

Then eliminating the inner loop containing H2/G4, we obtain Figure 2.16(a).
Finally, by reducing the loop containing H3, we obtain the closed-loop system
transfer function as shown in Figure 2.16(b).
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30 CHAPTER 2. SYSTEM MODELLING

Figure 2.16: Reduced block diagram.

Find the transfer function of the system shown in Figure 2.17.Example 2.15

Figure 2.17: Block diagram of Example 2.15.

� Solution Moving the first summing point ahead of G1, and the final take
off point beyond G4 gives a modified block diagram shown in Figure 2.18(a).
The block diagram in Figure 2.18(a) is then reduced to the form given in Figure
2.18(b).

Figure 2.18: Stages of block diagram reduction.
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2.7. SYSTEM MODELLING DIAGRAMS 31

The overall closed-loop transfer function is then

Y (s)

R(s)
=

G1G2G3G4

(1+G1G2H1)(1+G3G4H2)

1 + G1G2G3G4H3

(G1G4)(1+G1G2H1)(1+G3G4H2)

=
G1G2G3G4

(1 +G1G2H1)(1 +G3G4H2) +G2G3H3
�

Table 2.4: Block diagram transformations.

Transformation Equation Block diagram Equivalent block diagram

1. Cascaded blocks Y = (P1P2)X

2. Combining
blocks in parallel

Y = P1X ± P2X

3. Removing a block
from a forward
loop

Y = P1X ± P2X

4. Eliminating feed-
back loop

Y = P1(X ∓ P2Y )

5. Removing a block
from a feedback
loop

Y = P1(X ∓ P2Y )

6. Rearranging
summing junc-
tions

Z = W ±X ± Y

7. Moving a sum-
ming junction in
front of a block

Z = PX ± Y
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32 CHAPTER 2. SYSTEM MODELLING

Table 2.4: .... continued.

8. Moving a sum-
ming junction be-
yond a block

Z = P (X ± Y )

9. Moving a takeoff
point in front of a
block

Y = PX

10. Moving a takeoff
point beyond a
block

Y = PX

11. Moving a takeoff
point in front of
a summing junc-
tion

Z = X ± Y

12. Moving a take-
off point beyond
a summing junc-
tion

Z = X ± Y

Systems with multiple inputs

In feedback control systems, we often encounter multiple inputs. For a linear
system, we can apply the principle of superposition to solve this type of prob-
lems, i.e. to treat each input one at a time while setting all other inputs to
zeros, and then algebraically add all the outputs as follows:

1. Set all inputs except one equal to zero.

2. Transform the block diagram to solvable form.

3. Find the output response due to the chosen input action alone.

4. Repeat steps 1 to 3 for each of the remaining inputs.

5. Algebraically summ all the output responses found in steps 1 to 5.
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2.7. SYSTEM MODELLING DIAGRAMS 33

Find the complete output for the system shown in Figure 2.19 when both inputs Example 2.16
act simultaneously.

Y (s)

Figure 2.19: System with multiple inputs.

� Solution The block diagram shown in Figure 2.19 can be reduced and sim-
plified to the form given in Figure 2.20.

Y (s)

Figure 2.20: Reduced and simplified block diagram.

Putting R2(s) = 0 and replacing the summing point by +1 gives the block dia-
gram shown in Figure 2.21. In Figure 2.21 nothe that Y1(s) is response to R1(s)
acting alone.

Y1(s)

Figure 2.21: Block diagram for R1(s) acting alone.

The closed-loop transfer function is therefore

Y1(s)

R1(s)
=

G1G2

1+G2H2

1 + G1G2H1

1+G2H2
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34 CHAPTER 2. SYSTEM MODELLING

or

Y1(s) =
G1G2R1

1 +G2H2 +G1G2H1

Now if R1(s) = 0 and the summing point is replaced by −1, then the response
Y2(s) to input R2(s) acting alone is given by Figure 2.22. The choice as to
whether the summing point is replaced by +1 or −1 depends upon the sign at
the summing point.

Y2(s)

Figure 2.22: Block diagram for R2(s) acting alone.

Note that in Figure 2.22 there is a positive feedback loop. Hence the closed-loop
transfer functionn relating R2(s) and Y2(s) is

Y2(s)

R2(s)
=

−G1G2H1

1+G2H2

1−
(
−G1G2H1

1+G2H2

)
or

Y2(s) =
−G1G2H1R2

1 +G2H2 +G1G2H1

Using the principle of superposition, the complete response is given by

Y (s) = Y1(s) + Y2(s)

or

Y (s) =
G1G2R1 −G1G2H1R2

1 +G2H2 +G1G2H1
�

2.7.2 Signal-flow graph

Block diagrams are adequate for the representation of the interrelationships of
controlled and input variables. However, for a system with reasonably com-
plex interrelationships, the block diagram reduction technique is cumbersome
and often quite difficult to complete. An alternative method for determining
the relationship between system variables has been developed by Mason and is
based on a representation of the linear system by line segments called Signal-
Flow Graph (SFG). The advantage of the SFG method is the availability of a
flow graph gain formula, which provides the relation between system variables
without requiring any reduction procedure or manipulation of the flow graph.

Basic elements of an SFG

A signal flow graph is a pictorial representation a set of simultaneous linear
algebraic equations describing a system. When constructing a SFG, junction
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2.7. SYSTEM MODELLING DIAGRAMS 35

points or nodes are used to represent variables. The nodes are connected by
line segments, called branches. A signal can transmit through a branch only in
the direction of the arrow. As an example consider a linear system represented
by a simple algebraic equation

y2 = a12y1

where y1 is the input, y2 is the output, and a12 is the gain between the two
variables. The SFG representation is shown in Figure 2.23

Figure 2.23: Signal-flow graph of y2 = a12y1.

Construct a SFG to the following set of algebraic equations: Example 2.17

y2 = a12y1 + a32y3

y3 = a23y2 + a43y4

y4 = a24y2 + a34y3 + a44y4

y5 = a25y2 + a45y4

� Solution Figure 2.24 shows a step-by-step construction of the signal-flow
graph. The complete SFG is shown in Figure 2.25. �

Figure 2.24: Step-by-step construction of the signal-flow graph.

Basic properties of SFG

The important properties of the SFG are summarised as follows:
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36 CHAPTER 2. SYSTEM MODELLING

Figure 2.25: Complete signal-flow graph.

1. SFG applies only to linear systems.

2. The equations of which SFG is drawn must be algebraic equations in the
form of cause and effect.

3. Nodes are used to represent variables. Normally, the nodes are arranged
from left to right, from the input to the output, following succession of
cause-and-effect relations through the system.

4. Signals travel along branches only in the direction described by the arrows
of the branches.

5. The branch directing from yk to yj represents the dependence of yj upon
yk but not the reverse.

6. A signal yk traveling along a branch between yk and yj is multiplied by
the gain of the branch akj , so that a signal akjyk is delivered at yj .

Definitions of the SFG terms

Before proceeding further, we define some terms which we will need later:

• A source is a node which has outgoing branches only (Example: y1 in
Figure 2.25).

• A sink is a node which has only incoming branches (Example: y5 in Figure
2.25).

• A path is a set of branches having the same sense of direction.

• A forward path originates from a source and terminates in a sink. No
node may be encountered more than once. In the SFG of Figure 2.25, there
are three forward paths between y1 and y5. One such path for example is
from y1 to y2 to y5 (through the branch with gain a25).

• The path gain is the product of the coefficients associated with the
branches of the path. For example the path gain for the path y1− y2− y5

in Figure 2.25 is a12a25.

• A feedback loop is a path that begins and ends at the same node; addi-
tionally no node may be encountered more than once. For example there
are four loops in the SFG of Figure 2.25. These are shown in Figure 2.26.

• The loop gain is the path gain of a feedback loop. For example, the loop
gain of the loop y2 − y4 − y3 − y2 in Figure 2.26 is a24a43a32.
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2.7. SYSTEM MODELLING DIAGRAMS 37

Figure 2.26: Four loops in the signal-flow graph of Figure 2.25.

Mason’s Rule

Given an SFG or block diagram, the task of solving for the input-output rela-
tions by algebraic manipulation could be quite tedious. Fortunately, there is a
general gain formula available that allows the determination of the input-output
relations of an SFG by inspection.

Mason’s states that the input-output transfer function associated with a signal-
flow graph is given by

G =

∑
k Pk∆k

∆
(2.11)

where

∆ = 1−
∑
L1 +

∑
L2 −

∑
L3 + · · ·+ (−1)m

∑
Lm

and

Pk = gain of the kth forward path

L1 = gain of each closed loop in the graph

L2 = product of loop gains of any two nontouching loops (loops are called non-
touching if they have no node in common)

...

Lm = product of loop gains of any m nontouching loops

∆k = the value of ∆ remaining with the loops touching the path Pk are removed

Procedures to solve SFG by using Mason’s rule:

1. Identify the no. of forward paths and determine the forward-path gains.

2. Identify the no. of loops and determine the loop gains.

3. Identify the non-touching loops taken two at a time, three at a time and
so on. Determine the product of the non-touching loop gains.
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38 CHAPTER 2. SYSTEM MODELLING

4. Determine ∆ and ∆k.

5. Substitute all of the above information into the Mason’s gain formula.

Determine the closed-loop transfer function Y (s)/R(s) of the SFG shown inExample 2.18
Figure 2.27.

Figure 2.27: Signal-flow graph for example 2.18.

� Solution

1. Forward path: There is only one forward path between R(s) and Y (s),
and the forward-path gain is

P1 = G(s)

2. Closed loops: There is only one loop; the loop gain

L1 : −G(s)H(s)

3. Non-touch loops: There are no non-touching loops since there is only one
loop.

4. ∆ and ∆1: The forward path is in touch with the only loop. Thus, ∆1 = 1,
and

∆ = 1− L1 = 1 +G(s)H(s)

5. Using (2.11), the closed-loop transfer function is written as

P1∆1

∆
=

G(s)

1 +G(s)H(s)
�
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2.7. SYSTEM MODELLING DIAGRAMS 39

Determine the gain between y1 and y5 using the gain formula for the SFG shown Example 2.19
in Figure 2.25.

� Solution

1. Forward path: There are three forward paths between y1 and y5 and
forward-path gains are

P1 = a12a23a34a45 Forward path: y1 − y2 − y3 − y4 − y5

P2 = a12a25 Forward path: y1 − y2 − y5

P3 = a12a24a45 Forward path: y1 − y2 − y4 − y5

2. Closed loops: The four loops of the SFG are shown in Figure 2.26. The
loop gains are

L1 : a23a32 a34a43 a24a43a32 a44

hence ∑
L1 = a23a32 + a34a43 + a24a43a32 + a44

3. Non-touch loops: There is only one pair of non-touching loops; that is, the
two loops

y2 − y3 − y2 and y4 − y4

Thus the product of the gains of the two non-touching loops is

L2 : a23a32a44

4. ∆ and ∆k: ∆ = 1−
∑
L1 +

∑
L2 hence

∆ = 1− (a23a32 + a34a43 + a24a43a32 + a44) + a23a32a44

All the loops are in touch with forward paths P1 and P3. Thus, ∆1 =
∆3 = 1. Two of the loops are not in touch with forward path P2. These
loops are: y3 − y4 − y3 and y4 − y4. Thus,

∆2 = 1− a34a43 − a44

5. Using (2.11), the closed-loop transfer function is written as

G =
P1∆1 + P2∆2 + P3∆3

∆

=
a12a23a34a45 + (a12a25)(1− a34a43 − a44) + a12a24a45

1− (a23a32 + a34a43 + a24a43a32 + a44) + a23a32a44
�

Application of Mason’s rule between a source and a non-sink node

In the previous example, Example 2.19, we basically determined the transfer
function between y1(source node) and y5(sink node). Often, it is of interest to
find the relation between a source and a non-sink node. For example, in the SFG
of Figure 2.25, it may be of interest to find the relation y2/y1, which represents
dependence of y2 upon y1; noting that y2 is not a sink node. To make y2 a sink
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40 CHAPTER 2. SYSTEM MODELLING

Figure 2.28: Modification of signal-flow graph so that y2 satisfy the condition as
sink node.

node, we simply connect a branch with unity gain from the existing node y2 to
a new node also designated as y2, as shown in Figure 2.28.

Determine the gain between y1 and y2 using the gain formula for the SFGExample 2.20
shown in Figure 2.28.

� Solution

1. Forward path: There is only one forward path between y1 and y2 and
forward-path gain is

P1 = a12 Forward path: y1 − y2

2. Closed loops: The four loops of the SFG are shown in Figure 2.26. The
loop gains are

L1 : a23a32 a34a43 a24a43a32 a44

hence ∑
L1 = a23a32 + a34a43 + a24a43a32 + a44

3. Non-touch loops: There is only one pair of nontouching loops; that is, the
two loops

y2 − y3 − y2 and y4 − y4

Thus the product of the gains of the two nontouching loops is

L2 : a23a32a44

4. ∆ and ∆k: ∆ = 1− (a23a32 + a34a43 + a24a43a32 + a44) + a23a32a44

Two of the loops are not in touch with forward path P1. These loops
are: y3 − y4 − y3 and y4 − y4. Thus,

∆1 = 1− a34a43 − a44

5. Using (2.11), the transfer function between y1 and y2 is written as

G =
P1∆1

∆

=
a12(1− a34a43 − a44)

1− (a23a32 + a34a43 + a24a43a32 + a44) + a23a32a44

Note that ∆ is the same as in Example 2.19 regardless of which sink node
is chosen. �
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Application of Mason’s rule between a non-source and sink node

We have seen earlier how to determine the gain between a source and a non-sink
node. Another situation of interest is find the relation between a non-source and
a sink node. For example, in the SFG of Figure 2.29, it may be of interest to find
the relation y7/y2, which represents the dependence of y7 upon y2, the latter is
not a source node.

Figure 2.29: Signal-flow graph for Example 2.21.

We can show that by including a source node (y1 in this case), we may write
y7/y2 as

y7

y2
=
y7/y1

y2/y1
=

∑
k Pk∆k

∆

∣∣∣∣
from y1 to y7∑

k Pk∆k

∆

∣∣∣∣
from y1 to y2

Since ∆ is independent of the sources and sinks, the last equation is written

y7

y2
=
y7/y1

y2/y1
=

∑
k Pk∆k

∣∣∣∣
from y1 to y7∑

k Pk∆k

∣∣∣∣
from y1 to y2

Note that ∆ does not appear in the last equation. However, you must evaluate
it to be able to find ∆k.

Determine the gain between y7 and y2 for the SFG shown in Figure 2.29. Example 2.21

� Solution We start by determining y2/y1:

1. Forward path: There is only one forward path between y1 and y2 and
forward-path gain is

P1 = 1 Forward path: y1 − y2

2. Closed loops: There are four loops

y2 − y3 − y2 y4 − y5 − y4 y2 − y3 − y4 − y5 − y2 y4

with gains

L1 : −G1H1 −G3H2 −G1G2G3H3 −H4
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Hence, ∑
L1 = −(G1H1 +G3H2 +G1G2G3H3 +H4)

3. Non-touch loops:

– Product of loop gains of any two nontouching loops (there are four
possible combinations), thus:

L2 : G1G3H1H2 G1H1H4 G3H2H4 G1G2G3H3H4

and∑
L2 = G1G3H1H2 +G1H1H4 +G3H2H4 +G1G2G3H3H4

– Product of loop gains of any three nontouching loops:

L3 : −G1G3H1H2H4

4. ∆ and ∆k: ∆ = 1−
∑
L1 +

∑
L2 −

∑
L3, therefore,

∆ = 1 +G1H1 +G3H2 +G1G2G3H3 +H4 +G1G3H1H2

+G1H1H4 +G3H2H4 +G1G2G3H3H4 +G1G3H1H2H4

Two of the loops are not in touch with forward path P1. These loops are:
y4 − y5 − y4 and y4 − y4. Thus,

∆1 = 1 +G3H2 +H4 +G3H2H4

5. Using (2.11), the gain between y1 and y2 is written as

y2

y1
=
P1∆1

∆
=

1 +G3H2 +H4 +G3H2H4

∆

In a similar fashion we now determine the gain between y1 and y7:

1. Forward path: There are two forward path between y1 and y7, the forward-
paths gains are

P1 = G1G2G3G4 Forward path: y1 − y7

P2 = G1G5 Forward path: y1 − y2 − y3 − y6 − y7

2. Closed loops: As before.

3. Non-touch loops: As before

4. ∆ and ∆k: The forward path P1 is in touch with all loops. Thus, ∆1 = 1.
One loop is not in touch with forward path P2, y4 − y5 − y4, thus

∆2 = 1 +G3H2

5. Using (2.11), the gain between y1 and y7 is written as

y7

y1
=
P1∆1 + P2∆2

∆
=
G1G2G3G4 +G1G5(1 +G3H2)

∆

Finally, the gain between y2 and y7 is

y7

y2
=
y7/y1

y2/y1
=
G1G2G3G4 +G1G5(1 +G3H2)

1 +G3H2 +H4 +G3H2H4
�
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2.7.3 Conversion from block diagram to SFG

An equivalent SFG for a block diagram can be drawn by performing the following
steps:

1. Identify the input/output signals, summing junctions & pickoff points→they
are replaced with nodes.

2. Interconnect the nodes & indicate the directions of signal flow by using
arrows.

3. Identify the blocks → they are replaced with branches. For each negative
sum, a negative sign is included with the branch.

4. Label the input/output signals and the branches accordingly.

5. Add unity branches as needed for clarity or to make connections.

6. Simplify the SFG→ eliminate redundant nodes/branches (only if the node
is connected to branches of a single flow in & a single flow out with unity
gain).

Figure 2.30: Block diagrams and corresponding signal-flow graphs.
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Convert the block diagram in Figure 2.31 to a signal flow graph and determineExample 2.22
the transfer function using Mason’s gain formula.

Figure 2.31: (a) Block diagram a control system. (b) Equivalent signal-flow graph.

� Solution

1. Forward path:

P1 = G1G2G3

P2 = G1G4

2. Closed loops:

L1 : −G1G2H1 −G2G3H2 −G1G2G3 −G1G4 −G4H2

3. Non-touch loops: There are no nontouching loops.

4. ∆ and ∆k: ∆ = 1−
∑
L1 +

∑
L2 −

∑
L3, therefore,

∆ = 1 +G1G2H1 +G2G3H2 +G1G2G3 +G1G4 +G4H2

All the loops are in touch with P1 and P2, thus ∆1 = ∆2 = 1.

5. Using (2.11), the transfer function between Y (s) and R(s) is written as

Y (s)

R(s)
=
P1∆1 + P2∆2

∆
=
G1G2G3 +G1G4

∆
�
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2.7. SYSTEM MODELLING DIAGRAMS 45

2.7.4 Construction of block diagrams Examples

Construct a block diagram for the mechanical system described by the following Example 2.23
set of equations

X1(s) =
B2s+K

m1s2 + (B1 +B2)s+ k
X3(s) +

F (s)

m1s2 + (B1 +B2)s+ k
(2.12)

X2(s) =
B3

m2s+B3 +B4
X3(s) (2.13)

X3(s) =
B2s+K

(B2 +B3)s+ k
X1(s) +

B3s

(B2 +B3)s+ k
X2(s) (2.14)

� Solution Each dynamic equation represents a subsystem. Its block diagram
is constructed by a simple principle: treat the right hand side signals as the
input and the left hand side as the output. Equation (2.12) can be represented
as

Figure 2.32: Block diagram of Equation (2.12).

Equation (2.13) can be represented as

Figure 2.33: Block diagram of Equation (2.13).

and Equation (2.14)

Figure 2.34: Block diagram of Equation (2.14).

After construction of block diagrams for individual equations, we connect these
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Figure 2.35: Block diagram of the system in Example 2.23.

block diagrams to form a block diagram for the entire system:

Construct a block diagram for a system described by the following set of equa-Example 2.24
tions

Pd(s) =
1

CRds+ 1
Pc(s) (2.15)

Pi(s) =
1

CRis+ 1
Pc(s) (2.16)

Pc(s) = KX(s) (2.17)

X(s) =
b

a+ b
E(s) +

a

a+ b
Y (s) (2.18)

Y (s) =
A

Ks
[Pi(s)− Pd(s)] (2.19)

� Solution Each dynamic equation represents a subsystem. Its block diagram
is constructed by a simple principle: treat the right hand side signals as the
input and the left hand side as the output.

Figure 2.36: Block diagram of Equation (2.15).
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Figure 2.37: Block diagram of Equation (2.16).

Figure 2.38: Block diagram of Equation (2.17).

Figure 2.39: Block diagram of Equation (2.18).

Figure 2.40: Block diagram of Equation (2.19).

Figure 2.41: Block diagram of the system in Example 2.24.

37

Dr. Ahmed Abdolkhalig 
The University of Tobruk 
Department of Electrical Engineering 
www.ahmed.ucoz.org

Ahmed Abdolkhalig
Pencil




