
Chapter 4
Stability Analysis

Stability is the most crucial issue in designing any control system. One of the
most common control problems is the design of a closed loop system such that
its output follows its input as closely as possible. If the system is unstable such
behavior is not guaranteed. Unstable systems exhibit an unbounded output,
i.e., a response blowing up to infinity as time increases. This usually cause the
system to suffer serious damage such as burn out, break down or it may even
explode. Therefore, for such reasons our primary goal is to guarantee stability.
As soon as stability is achieved one seeks to satisfy other design requirements,
such as speed of response, settling time, steady state error, etc.

4.1 Introduction

To help make the later mathematical treatment of stability more intuitive let
us begin with a general discussion of stability concepts and equilibrium points.
Consider the ball which is free to roll on the surface shown in Figure 4.1. The
ball could be made to rest at points A, E, F , and G and anywhere between
points B and D, such as at C. Each of these points is an equilibrium point of
the system.

A small perturbation away from points A or F will cause the ball to diverge
from these points. This behavior justifies labeling points A and F as unstable

Figure 4.1: Equilibrium points
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74 CHAPTER 4. STABILITY ANALYSIS

equilibrium points. After small perturbations away from E and G, the ball will
eventually return to rest at these points. Thus E and G are labeled as stable
equilibrium points. If the ball is displaced slightly from point C, it will normally
stay at the new position. Points like C are sometimes said to be neutrally stable.

So far we assumed small perturbations, if the ball was displaced sufficiently
far from point G, it would not return to that point. We say the system is stable
locally. Stability therefore depends on the size of the original perturbation and
on the nature of any disturbances.

Stability deals with the following questions. If at time t0 the system is per-
turbed from its equilibrium point, does the system return to that point, or
remain close to it, or diverge from it?

As we shall see in this chapter, stability of a feedback system is directly re-
lated to the location of the roots of the characteristic equation of the system
transfer function.

4.2 Bounded-input bounded-output stability

A continuous-time system is stable if and only if every bounded input pro-
duces a bounded output. Consider a bounded input x(t) such that |x(t)| < B
for all t. Suppose that this input is applied to an LTI system with impulse
response h(t). Then

|y(t)| =
∣∣∣∣∫ ∞

0

h(τ)x(t− τ)dτ

∣∣∣∣
≤
∫ ∞

0

|h(τ)| |x(t− τ)| dτ

≤ B
∫ ∞

0

|h(τ)| dτ

Therefore, because B is finite, y(t) is bounded, hence, the system is stable if∫ ∞
0

|h(τ)| dτ <∞ (4.1)

For an LTI system with impulse response h(t) = e−3tu(t), determine the stabil-Example 4.1
ity of this causal LTI system.

� Solution Using (4.1), hence∫ ∞
0

e−3tdt = −1

3
e−3t

∣∣∣∣∞
0

=
1

3
<∞

and this system is stable. �

4.2.1 Relationship between characteristic equation roots
and stability

To show the relation between the roots of the characteristic equation and sta-
bility, let G(s) be a transfer function representation of an LTI system. Then,
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4.2. BOUNDED-INPUT BOUNDED-OUTPUT STABILITY 75

G(s) can be written as

G(s) =
bms

m + bm−1s
m−1 + · · ·+ b1s+ b0

ansn + an−1sn−1 + · · ·+ a1s+ a0

where the denominator polynomial is called the characteristic polynomial of
G(s). The equation

ans
n + an−1s

n−1 + · · ·+ a1s+ a0 = 0 (4.2)

is called the characteristic equation of G(s). The roots of the characteristic
equation are called the poles of G(s). The order of the system G(s) is defined
to be the degree of the characteristic polynomial.

Assume that the roots pi of the characteristic equation are real or complex,
but are distinct. The solution to the differential equation whose characteristic
equation is given by (4.2) may be written using partial-fraction expansion as

y(t) =

n∑
i=1

Kie
pit (4.3)

where pi are the roots of (4.2). The system is stable if and only if every term
in (4.3) goes to zero as t→∞:

epit → 0 for all pi

This will happen if all the poles of the system are strictly in the LHP, where

Re{pi} < 0

If any poles are repeated, the response must be changed from that of (4.3)
by including a polunomial in t in place of Ki, but the conclusion is the same.

Figure 4.2: Time functions associated with pole locations in the s-plane.
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76 CHAPTER 4. STABILITY ANALYSIS

Therefore, the stability of a system can be determined by computing the location
of the roots of the characteristic equation and determining whether they are all
in the LHP. If the system has any poles in the RHP, it is unstable. Hence the
jω axis is the stability boundary between BIBO stable and unstable responses.
A system is said to be marginally stable if all its poles lie in the LHP, and at
least one pole on the jω axis. If the system has repeated poles on the jω axis,
then it is unstable. For example, repeated poles at s = 0

L−1

[
1

s2

]
= t

results in an unbounded response. The following table illustrates the stability
conditions of an LTI system with reference to the locations of the roots of the
characteristic equation. Figure 4.2 summarizes all the results.

Table 4.1: Stability conditions of a LTI system.

Stability conditions Locations of the roots

Stable All the roots are in the LHP

Marginally stable At least one root and no multiple
roots on the jω-axis; and no roots
in the RHP.

Unstable At least one root in the RHP or at
least one multiple roots on the jω-
axis.

The following examples illustrates the stability conditions of systems with ref-
erence to the poles of the transfer function G(s).

Table 4.2: Stability examples.

Transfer function G(s) Stability condition

G(s) =
20

(s+ 1)(s+ 2)(s+ 3)
Stable

G(s) =
20(s+ 1)

(s− 1)(s2 + 2s+ 2)
Unstable due to the pole at s = 1

G(s) =
20(s− 1)

(s+ 2)(s2 + 4)
Marginally stable due to s = ±j2

G(s) =
10

(s2 + 4)2(s+ 10)
Unstable due to the multiple poles
at s = ±j2

As shown above, one way of determining stability is to calculate the roots of
the characteristic equation. The disadvantage of this is that system param-
eters must be assigned numerical values, which makes it difficult to find the
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4.3. ROUTH-HURWITZ STABILITY CRITERION 77

range of values of a parameter that ensures stability. For example in the spring-
mass-damper system the characteristic equation is Ms2 +Bs+K, one can not
determine the ranges of M,B and K to ensure stability.

An alternative to locating the roots of the characteristic equation is given by
Routh-Hurwitz stability criterion, which is presented next.

4.3 Routh-Hurwitz Stability Criterion

4.3.1 General properties of polynomials

Consider the second order polynomial, assuming all coefficients are real

P (s) = s2 + a1s+ a0 = (s− p1)(s− p2) (4.4)

= s2 − (p1 + p2)s+ p1p2 (4.5)

By comparing (4.4) with (4.5) implies

a1 = −(p1 + p2) and a0 = p1p2

If p1 and p2 are stable, we have a1 > 0 and a0 > 0. Consider next the third
order polynomial

P (s) = s3 + a2s
2 + a1s+ a0 = (s− p1)(s− p2)(s− p3)

= s3 − (p1 + p2 + p3)s2 + (p1p2 + p2p3 + p1p3)s− p1p2p3

and by comparing the two equations we have

a2 = −(p1 + p2 + p3)

a1 = (p1p2 + p2p3 + p1p3)

a0 = −p1p2p3

Again if all roots are stable, all the coefficients will have the same sign. How-
ever, this condition is not sufficient, for it is quite possible that an
equation with all its coefficients nonzero and of the same sign still
will not have all the roots in the left half of the s-plane. Consider for
example the polynomial s3 + s2 + 2s + 8, clearly all the coefficients have the
same sign however not all roots are in the LHP.

Consider a general nth order polynomial

P (s) = sn + an−1s
n−1 + · · ·+ a1s+ a0

= (s− p1)(s− p2) · · · (s− pn)
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78 CHAPTER 4. STABILITY ANALYSIS

By analogy with the previous examples, we have

an−1 = −
n∑
i=1

pi

an−2 =
∑

product of roots taken 2 at a time

an−3 = −
∑

product of roots taken 3 at a time

...

a0 = (−1)n
n∏
i=1

pi

We conclude

• If all roots are stable, all the polynomial coefficients will be positive.

• If any coefficient is negative, at least one root is unstable.

• If any coefficient is zero, not all roots are stable.

4.3.2 Routh-Hurwitz stability criterion

The Routh-Hurwitz criterion represents an analytical procedure of determining
if all roots of a polynomial with constant real coefficients lie in the left half of
the s-plane, without actually solving for the roots.

Consider the nth order polynomial

P (s) = ans
n + an−1s

n−1 + · · ·+ a1s+ a0

in which we can always assume a0 6= 0. If a+0 = 0, we can write:

P (s) = s (ans
n−1 + an−1s

n−2 + · · ·+ a1)︸ ︷︷ ︸
P̂ (s)

and work with P̂ (s) instead. Note that in the case a0 = 0, P (s) will have at
least one root at the origin and we conclude that the LTI system is marginally
stable or unstable.

The Routh array

The first step in the Routh-Hurwitz criterion is to arrange the coefficients of the
characteristic polynomial into an array as follows

sn an an−2 an−4 an−6 · · ·
sn−1 an−1 an−3 an−5 an−7 · · ·

Further rows are then completed as
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4.3. ROUTH-HURWITZ STABILITY CRITERION 79

sn an an−2 an−4 an−6 · · ·
sn−1 an−1 an−3 an−5 an−7 · · ·
sn−2 b1 b2 b3 b4 · · ·
sn−3 c1 c2 c3 c4 · · ·

...
...

...
...

...
...

s2 k1 k2

s1 l1

s0 m1

where

b1 = − 1

an−1

∣∣∣∣ an an−2

an−1 an−3

∣∣∣∣ b2 = − 1

an−1

∣∣∣∣ an an−4

an−1 an−5

∣∣∣∣
c1 = − 1

b1

∣∣∣∣an−1 an−3

b1 b2

∣∣∣∣ c2 = − 1

b1

∣∣∣∣an−1 an−5

b1 b3

∣∣∣∣
...

m1 = − 1

l1

∣∣∣∣k1 k2

l1 0

∣∣∣∣
Once the Routh’s array has been completed, we investigate the signs of the
coefficients in the first column of the array. The roots of the equation are all in
the left half of the s-plane if all the elements of the first column of the Routh’s
array are of the same sign. The number of unstable roots is equal to the number
of sign changes in the first column of the array.

Consider the third order polynomial: Example 4.2

P (s) = s3 − s2 + s+ 6

This equation has one negative coefficient. Thus, we know without applying
Routh’s test that not all the roots of the equation are in the LHP. �

Consider the third order polynomial: Example 4.3

P (s) = s3 + s2 + 2s+ 8

The Routh array is:

s3 1 2

s2 1 8

s -6

1 8

The two sign changes (from +1 to -6 and from -6 to +8) indicates two unstable
roots. �
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80 CHAPTER 4. STABILITY ANALYSIS

Special cases when the Routh’s array terminates prematurely

Not all arrays can be completed as the one shown in Example 4.3. Depending on
the coefficients of the equation, the following difficulties may occur that prevent
the Routh’s array from completing properly:

1. The first element of a row is zero, with at least one nonzero element in the
same row, the procedure is modified by replacing that first element with a
small number ε such that |ε| � 1 and proceeding as before.

2. Every entry in a row is zero, the last modification will not give useful
information and another modification is needed.

To demonstrate the first case consider the polynomial:Example 4.4

P (s) = s5 + 2s4 + 2s3 + 4s2 + 11s+ 10

The Routh array is then

s5 1 2 11

s4 2 4 10

s3 0 6 0

Since the first element of the s3 row is zero, the elements in the s2 row would
all be infinite. To overcome this difficulty, we replace the zero in the s3 row by
a small positive number ε and then proceed with the array

s5 1 2 11

s4 2 4 10

s3 0→ ε 6 0

The first element of the s2 row is calculated as follows

−1

ε

∣∣∣∣2 4
ε 6

∣∣∣∣ = −1

ε
(12− 4ε) = 4− 12

ε
w −12

ε

with a similar procedure we calculate the remaining rows

s5 1 2 11

s4 2 4 10

s3 0→ ε 6 0

s2 −12/ε 10

s 6

1 10

There are two sign changes (irrespective of the sign of ε) indicating two unstable
roots. �

Special Case: Zero rows. If all the coefficients in a row are zero, a pair
of roots of equal magnitude and opposite sign is indicated. These could be two
real roots with equal magnitudes and opposite signs or two conjugate imaginary
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4.3. ROUTH-HURWITZ STABILITY CRITERION 81

roots. The zero row is replaced by taking the coefficients of dPa(s)/ds, where
Pa(s), called the auxiliary polynomial, is obtained from the values in the row
above the zero row. Why? A zero row implies that a polynomial Pa(s) has only
even or odd powers. It turns out in this case, Pa(s) and Pa(s) +dPa(s)/ds have
exactly the same number of RHP poles (proof beyond the scope of theis course).
As the goal is just to find the number of RHP poles, we can use dPa(s)/ds as a
surrogate to continue the procedure. The pair of roots can be found by solving
dPa(s)/ds = 0. The roots of Pa(s) are also the roots of the the ploynomial P (s).

As an example of case 2 consider the the polynomial: Example 4.5

P (s) = s3 + s2 + 2s+ 2

The Routh array is then

s3 1 2

s2 1 2 ←− auxiliary polynomial Pa(s) = s2 + 2

s 0 0

The auxiliary polynomial Pa(s) indicates that P (s) = 0 must have two pairs of
roots of equal magnitude and opposite sign, which are also roots of the auxiliary
polynomial equation Pa(s) = 0. Taking the derivative of Pa(s) with respect to
s we obtain

dPa(s)

ds
= 2s

so the s row is as shown below and the Routh array is

s3 1 2

s2 1 2

s 2 0 ←− Coefficients of dPa(s)/ds

1 2

The absence of a sign change indicates no unstable roots, so all roots are on the
imaginary axis. We conclude the system is marginally stable. �

The following example combines case 1 and case 2 problems: polynomial: Example 4.6

P (s) = s4 + 4

The Routh array is then

s4 1 0 4←− Pa(s) = s4 + 4

s3 0→ 4 0 0←− Coefficients of
dPa(s)

ds
= 4s3

s2 0→ ε 4

s −16/ε

1 4

The two sign changes indicate two unstable roots. �

In Summary, the three cases that occur in the application of the Routh-
Hurwitx criterion are as follows:
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82 CHAPTER 4. STABILITY ANALYSIS

Case 1. No elements in the first column are zero. There are no problems
in completing the array.

Case 2. There is at least one nonzero element in a row, with the first
element equal to zero. This always indicates an unstable system. The
first element (which is zero) is replaced with the value ε, ε � 1, and the
calculation of the array continues.

Case 3. All elements in a row are zero. This always indicates a system
that is not stable, but it may be marginally stable. This case can be
analyzed through the use of the auxiliary equation, as described earlier. If
the system is marginally stable the roots on the jω axis are also the roots
of the auxiliary equation.

4.4 Applications in feedback design

Consider the following feedback system involving a plant G(s) and a com-
pensator (or controller) K(s)

K(s) G(s)

Figure 4.3: Feedback control system.

The closed-loop transfer function H(s) is

H(s) =
G(s)K(s)

1 +G(s)K(s)

The closed-loop poles are given by the roots of the charactersistic equation

1 +G(s)K(s) = 0

Suppose we write

G(s) =
Ng(s)

Dg(s)
and K(s) =

Nk(s)

Dk(s)

where Ng(s), Dg(s), Nk(s), and Dk(s) are all polynomials. Then, the closed
loop transfer function is given

H(s) =

Ng(s)Nk(s)

Dg(s)Dk(s)

1 +
Ng(s)Nk(s)

Dg(s)Dk(s)

=
Ng(s)Nk(s)

Ng(s)Nk(s) +Dg(s)Dk(s)
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4.4. APPLICATIONS IN FEEDBACK DESIGN 83

The poles of the closed-loop system are also given by the roots of the charac-
teristic polynomial

Ng(s)Nk(s) +Dg(s)Dk(s)

The poles of the open-loop system G(s) are the roots of its characteristic poly-
nomial

Dg(s) = 0

which are generally different from the closed-loop poles.

A fundamental design objective in control is the stabilization of unstable sys-
tems. The Routh-Hurwitz stability criterion can be used as an aid in feedback
design.

Let G(s) the be given by Example 4.7

G(s) =
1

s3 + 5s2 + 2s− 8

Let K(s) = K be a constant controller. Find the range of values of K for which
the closed-loop is stable.

� Solution Since the coefficients of the characteristic polynomial do not have
the same sign, we conclude G(s) is unstable. The closed-loop poles are the roots
of the characteristic equation

1 +KG(s) = 1 +
K

s3 + 5s2 + 2s− 8
= 0

which implies
s3 + 5s2 + 2s+ (K − 8) = 0

The Routh array is

s3 1 2

s2 5 K − 8

s1 0.2(18−K)

1 K − 8

For stability we need
8 < K < 18 �

Let G(s) the be given by Example 4.8

G(s) =
1

s3 − s2 − 10s− 8

Find the range of values of K for which the closed-loop is stable.

� Solution The characteristic equation is given by

1 +KG(s) = 1 +
K

s3 − s2 − 10s− 8
= 0
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84 CHAPTER 4. STABILITY ANALYSIS

which implies
s3 − s2 − 10s+ (K − 8) = 0

It follows that no choice of K can ensure all coefficients have the same sign. We
conclude that G(s) cannot be stabilized by a constant controller and dynamic
compensation is need. �
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