
Chapter 5
Root-Locus Analysis and Design

In this chapter we introduce one of the major analysis and design methods
discussed in this course. The method is the root-locus procedure; it indicates
to us the characteristics of a control system’s transient response. We have seen
that the response of an LTI system is largely determined by the location of its
poles.

5.1 Root-locus principles

We introduce the root locus through an example. Consider the feedback
control system shown in Figure 5.1

K
1

s(s+ 2)

Figure 5.1: Feedback control system.

The closed-loop transfer function is given by

H(s) =

K

s(s+ 2)

1 +
K

s(s+ 2)

=
K

s2 + 2s+K

Hence the characteristic equation, which is the denominator of the closed-loop
transfer function set to zero, is

s2 + 2s+ k = 0

We see, since the polynomial is second order, that the system is stable for all
positive values of K. It is not evident for this example exactly how the value of

85

1

Dr. Ahmed Abdolkhalig 
The University of Tobruk 
Department of Electrical Engineering 
www.ahmed.ucoz.org

Ahmed Abdolkhalig
Pencil

Ahmed Abdolkhalig
Pencil



86 CHAPTER 5. ROOT-LOCUS ANALYSIS AND DESIGN

Table 5.1: Characteristic equation roots for different values of K.

K Characteristic equation Roots

0 s2 + 2s = 0 s = 0, −2 Note these are the
open loop poles

1 s2 + 2s+ 1 = 0 s = −1± j0

2 s2 + 2s+ 2 = 0 s = −1± j

K affects the transient response. Table 5.2 show the roots of the characteristic
equation for different values of K. To investigate some of the effects of choosing
different values of K, we plot the roots of the system characteristic equation in
the s-plane. These roots are plotted in Figure 5.2 for 0 ≤ K ≤ ∞.

Figure 5.2: Plot of characteristic equation roots.

We can see from the plot that for 0 < K < 1, the roots are real with different
time constants. For K = 1, the roots are real and equal, and the system is
critically damped. For K > 1, the roots are complex with a time constant of
1s, with the value of ζ decreasing as K increases. Hence, as K increases with
the roots being complex, the overshoot in the transient response increases.

The plot in Figure 5.2 is called the root locus of the system in Figure 5.1.
The root-locus of a system is a plot of the roots of the system char-
acteristic equation (closed-loop poles) as K varies from 0 to ∞.

For an nth order system, the root-locus is a family of n curves traced out by the
n closed-loop poles as K is varied from zero to infinity. Plotting the root locus
for negative values of K will be considered later.
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5.1. ROOT-LOCUS PRINCIPLES 87

5.1.1 Root-locus criterion

We generally consider the system of Figure 5.3 in discussing the root locus, with
0 ≤ K <∞.

K G(s)

Figure 5.3: Feedback control system.

The characteristic equation for this system is given by

1 +KG(s) = 0 (5.1)

A point s1 lies on the root-locus if and only if s1 satisifies (5.1) for a real value
of K, with 0 ≤ K <∞. Equation (5.1) can be written as

K = − 1

G(s)
(5.2)

G(s) = − 1

K
(5.3)

KG(s) = −1 (5.4)

Equations (5.1) to (5.4) are all equivalent.

The magnitude citerion

Since K is real and positive, (5.2) is equivalent to

K =
1

|G(s)|
(5.5)

We call (5.5) the magnitude criterion of the root locus and can be used to
find K corresponding to a point on the root-locus.

Assume the point s1 = −2 lies on the root-locus find K if Example 5.1

G(s) =
s+ 4

(s+ 1)(s+ 3)

� Solution Evaluate |G(s)|s=−2, we have

|G(−2)| = | − 2 + 4|
| − 2 + 1|| − 2 + 3|

= 2

Hence,

K =
1

|G(−2)|
= 0.5

The value K = 0.5 can be interpreted as the gain needed, in the feedback control
system of Figure 5.3, that places the locus at the point s = −2. �
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88 CHAPTER 5. ROOT-LOCUS ANALYSIS AND DESIGN

The angle criterion

In general G(s) is complex and can be expressed in polar form as magnitude
and phase as |G(s)| G(s). If G(s) is to satisfy (5.4) we note the following

KG(s) = 180◦

but K is real and positive which means K = 0, hence,

G(s) = 180◦ (5.6)

and in general

G(s) = ±r(180◦) r = 1, 3, 5, · · ·

Equation (5.6) called the angle criterion may be interpreted as follows: For
a point s1 to be on the root-locus, the sum of all angles for vectors between
open-loop poles and zeros to point s1 must be equal 180◦. The angle criterion is
illustrated in Figure 5.4 for the function

G(s) =
s− z1

(s− p1)(s− p2)

In Figure 5.4 the poles of G(s) are marked × and the zero is marked ©. Suppose
that the point s1 is to be tested to determine if it is is on the root-locus. For
this point to be on the locus, we must have G(s1) = ±180◦ or equivalently

(s1 − z1)− (s1 − p1)− (s1 − p2) = ±r(180◦) r = 1, 3, 5, · · ·

The angle from the zero term s−z1 can be computed by drawing a line from the
location of the zero at z1 to the test point s1. In this case the line has a phase
angle marked θ1 on Figure 5.4. In a similar fashion, the vector from the pole
s = p1 to the test point s1 is shown with angle θ2, and the angle of the vector
from the pole s = p2 to s1 is shown with angle θ3. Thus the angle condition
(5.6) becomes

θ1 − θ2 − θ3 = ±r(180◦)

for the point s1 to be on the root-locus.

Figure 5.4: Illustration of the angle criterion.
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5.1. ROOT-LOCUS PRINCIPLES 89

In general the condition for a point in the s-plane to be on the root-locus is that∑
i

(angles form zi)−
∑
i

(angles from pi) = ±r(180◦) r = 1, 3, 5, · · ·

Check whether the point s0 = −1 + 2j lies on the root-locus for some value of Example 5.2
K if

G(s) =
s+ 1

s[(s+ 2)2 + 4](s+ 5)

� Solution For s0 to be on the locus, we must have G(s0) = ±180◦. Therefore,

G(s0) = (s0 + 1)− s0 − [(s0 + 2)2 + 4]− (s0 + 5)

= (s0 + 1)− s0 − (s0 + 2− 2j)− (s0 + 2 + 2j)− (s0 + 5)

= (2j)− (−1 + 2j)− (1)− (1 + 4j)− (4 + 2j)

= 90◦ − 116.6◦ − 0◦ − 76◦ − 26.6◦

= −129.2◦

Alternatively, we could have marked the poles and zeros of G(s) on the s-plane
as shown in Figure 5.5. The angles from the poles and zeros could be computed
by drawing a line from each pole and zero to the test point s0 as shown in Figure
5.5. The point s0 is on the root locus if∑

i

(angles form zi)−
∑
i

(angles from pi) = 180◦

and by inspecting Figure 5.5 yields

G(s0) = ψ1 − φ1 − φ2 − φ3 − φ4

= 90◦ − 116.6◦ − 0◦ − 76◦ − 26.6◦

= −129.2◦

Since the phase of G(s0) is not 180◦, we conclude that s0 is not on the root-locus,
so we must select another point and try again. �

Figure 5.5: Measuring the phases of Example 5.2.
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90 CHAPTER 5. ROOT-LOCUS ANALYSIS AND DESIGN

Example 5.2 demonstrates measuring phase is easy, however measuring phase
at every point in the s-plane is not practical. Therefore, we need some general
rules for determining where the root locus is.

5.2 Rules & steps for plotting the root-locus

The following transfer function is used for illustrating the steps for plotting
the root-locus

G(s) =
1

s[(s+ 4)2 + 16]

RULE 1. The root-locus is symmetric with respect to the real axis.

This follows from the assumption the G(s) is a ratio of two polynomials with
real coefficients. So, the characteristic polynomial roots are either real or occur
in complex conjugate pair.

STEP 1.
Draw the axes of the s-plane to a suitable scale and enter ×
for each pole of G(s) and a © for each zero. See Figure 5.6.

Figure 5.6: Step 1: Mark the poles and zeros.

RULE 2. The root-locus includes all points on the real axis to the
left of an odd number of poles and zeros.

This follows from the angle criterion, we consider first that all poles and zeros
of the open-loop transfer function are on the real axis, and we test points on
the real axis to determine if these points are on the locus.

Consider an open-loop transfer function G(s) of two poles and one zero as
illustrated in Figure 5.7. If we take a test point s on the real axis to the right of
the zero z1 as shown in Figure 5.7(a) we find that G(s) = 0. Hence, the angle
criterion is not satisfied, and we can see that any point to the right of the zero
z1 cannot be on the root locus.

Consider now a point s between the zero z1 and the pole p1. In this case
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5.2. RULES & STEPS FOR PLOTTING THE ROOT-LOCUS 91

(a) G(s)= s− z1︸ ︷︷ ︸
0

− s− p1︸ ︷︷ ︸
0

− s− p2︸ ︷︷ ︸
0

Angle criterion is not satisfied!

(b) G(s)= s− z1︸ ︷︷ ︸
180

− s− p1︸ ︷︷ ︸
0

− s− p2︸ ︷︷ ︸
0

Angle criterion is satisfied!

(c) G(s)= s− z1︸ ︷︷ ︸
180

− s− p1︸ ︷︷ ︸
180

− s− p2︸ ︷︷ ︸
0

Angle criterion is not satisfied!

(d) G(s)= s− z1︸ ︷︷ ︸
180

− s− p1︸ ︷︷ ︸
180

− s− p2︸ ︷︷ ︸
180

Angle criterion is satisfied!

Figure 5.7: Real axis locus.

G(s) = 180◦, as shown in Figure 5.7(b). However the angles from the poles
p1 and p2 are still 0◦. Thus the angle requirement is satisfied, and any point
between z1 and p1 is on the locus.

For a point s between p1 and p2, (see Figure 5.7(c)) the angle from z1 is still
180◦, as now is the angle from p1. The angle from p2 is still 0◦; hence the angle
requirement is not satisfied and no points between p1 and p2 are on the locus.
If the point s is to the left of the pole p2, the angles from z1, p1, and p2 are all
180◦, and the angle criterion is satisfied as shown in Figure 5.7(d).

For the case that we have complex poles or zeros, the preceding discussion
still applies. For example, two complex conjugate poles are shown in Figure 5.8.
Since complex poles (and zeros) must occur in conjugate pairs, the sum of the
angles from a pair of poles (or zeros) to a point on the real axis will always be
0◦ (or 360◦). Hence complex poles and zeros do not affect the part of the root
locus that lies on the real axis.

Summary:

• The angle contribution from a pole or zero to the left of s is 0◦.

• The angle contribution from a pole or zero to the right of s is 180◦.

• The angle contribution from a pair of complex conjugate poles or zeros
cancels out.
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92 CHAPTER 5. ROOT-LOCUS ANALYSIS AND DESIGN

Figure 5.8: Real axis locus.

STEP 2. Find the real axis portion of the locus.

Figure 5.9: The real axis parts of the locus are to the left of an odd number of poles
and zeros.

RULE 3. The root-locus originate on the open-loop poles for K = 0
and terminate at the open-loop zeros when they exist, otherwise it
terminates at infinity.

Suppose that

G(s) =
n(s)

d(s)
=

(s− z1)(s− z2) · · · (s− zm)

(s− p1)(s− p2) · · · (s− pn)
where n > m

=
sm + b1s

m−1 + · · ·+ bm
sn + aasn−1 + · · ·+ an

We assume that n(s) and d(s) are monic polynomials (monic means the coef-
ficient of the highest power of s is 1). The closed-loop characteristic equation
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5.2. RULES & STEPS FOR PLOTTING THE ROOT-LOCUS 93

can be written as

1 +K
n(s)

d(s)
= 0⇐⇒ d(s) +Kn(s) = 0⇐⇒ 1

K
+
n(s)

d(s)
= 0 (5.7)

If K = 0, then from (5.7) implies d(s) = 0 (i.e., the poles of G(s)). Therefore,
for K = 0 the roots of the closed-loop characteristic equation 1+KG(s) = 0 are
the open-loop poles. The points of the root-locus where K = 0 are sometimes
called the starting or departure points of the root-locus.

As k approaches infinity but s remains finite (the case s → ∞ will be dis-
cussed in Rule 4), (5.7) implies n(s)/d(s) = 0 which in turn implies n(s) = 0.
Therefore, as K approaches infinity the roots of 1 + KG(s) are the open-loop
zeros. The points of the root-locus where K =∞ are sometimes called the end-
ing or arrival points of the root-locus.

Note from the above discussion that we have n poles and m zeros. If m of
the n poles will terminate at m zeros, where will the n−m poles terminate. As
Rule 3 states they will terminate at infinity, the question remains which infinity,
Rule 4 next clarifies the matter.

RULE 4. If G(s) has α zeros at infinity, the root-locus will approach
α asymptotes as K →∞. The angles of asymptotes are

φ
A

= ± (2l + 1)

α
π l = 0, 1, 2, · · ·

The asymptotes intersect the real axis at

σ
A

=

∑
poles−

∑
zeros

number of poles− number of zeros

Recall from the discussion of Rule 3 for K → ∞, G(s) = 0 if n(s) is zero for
a finite s. The root locus will approach the open-loop zeros. To see a second
manner in which G(s) may go to zero, we express the characteristic equation
1 +KG(s) = 0 as

1 +K
sm + b1s

m−1 + · · ·+ bm
sn + aasn−1 + · · ·+ an

= 0 (5.8)

Since n > m, it is clear that G(s) goes to zero as s→∞. In fact, for very large
values of s (5.8) can be approximated by

1 +K
1

(s− σ
A

)n−m
= 0 (5.9)

To see why (5.9) is a good approximation to (5.8), try to imagine what would
we see if we could observe the locations of poles and zeros from a distance point
near infinity: They would appear to cluster near the s-plane origin as shown in
Figure 5.10(a). Thus m zeros would cancel the effects of m poles, and the other
n−m poles would appear to be in the same place, namely at s = σ

A
as shown

in Figure 5.10(b). If α = n−m we may write (5.9) as

1 +K
1

(s− σ
A

)α
= 0
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94 CHAPTER 5. ROOT-LOCUS ANALYSIS AND DESIGN

(a) (b)
n−m Poles

−σ
A

Figure 5.10: Determination of angles of asymptotes.

We say that the locus of (5.8) is asymptotic to the locus of (5.9) for large values
of K and s.

To find the locus, no matter how far away the point s is on the s-plane it
must satisfy the angle criterion. Since all α poles appear to be in the same
place the angle condition gives

αφ
A

= ±r(180◦) r = 1, 3, 5, · · ·

=⇒ φ
A

= ±r (180◦)

α

The angles φ
A

are the angles of asymptotes of the root-locus. Table 5.2 gives
these angles for small values of α.

Table 5.2: Angles of asymptotes.

α Angles

0 No asymptotes

1 180◦

2 ±90◦

3 ±60◦, 180◦

4 ±45◦, ±135◦

5 ±36◦, ±108◦, 180◦
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5.2. RULES & STEPS FOR PLOTTING THE ROOT-LOCUS 95

Finding σ
A

To determine σ
A

we make use of polynomial properties discussed in Section
4.3.1. Write G(s) as

G(s) =
(s− z1)(s− z2) · · · (s− zm)

(s− p1)(s− p2) · · · (s− pn)

=

sm −

(
m∑
i=1

zi

)
sm−1 + · · ·

sn −

(
n∑
i=1

pi

)
sn−1 + · · ·

Dividing both the numerator and the denominator by the numerator gives

G(s) =
1

sn−m −

(
n∑
i=1

pi −
m∑
i=1

zi

)
sn−m−1 + · · ·

(5.10)

For very large values of s, G(s) was approximated by

1

(s− σ
A

)n−m
(5.11)

The polynomial (s− σ
A

)n−m in (5.11) can be written as

sn−m + an−1s
n−m−1 + an−2s

n−m−2 + · · ·

where

an−1 = −
n−m∑
i=1

pi = −(n−m)σ
A

Hence (5.11) may be written as

1

sn−m − (n−m)σ
A
sn−m−1 + · · ·

(5.12)

Comparing (5.12) and (5.10) to order sn−m−1 yields

(n−m)σ
A

=
n∑
i=1

pi −
m∑
i=1

zi

Hence,

σ
A

=

∑
pi −

∑
zi

n−m
Notice that in the sum

∑
pi and

∑
zi the imaginary parts always add to zero

since complex poles and zeros always occur in complex conjugate pairs.

In summary the loci proceed to the zeros at infinity along asymptotes centered
at σ

A
and with angles φ

A
. when the number of m finite zeros is less than the n

number of poles, then n−m sections of loci must end at zeros at infinity. these
sections of loci proceed to the zeros at infinity along asymptotes as k approaches
infinity. These linear asymptotes are centered at the point σ

A
on the real axis.

11

Dr. Ahmed Abdolkhalig 
The University of Tobruk 
Department of Electrical Engineering 
www.ahmed.ucoz.org

Ahmed Abdolkhalig
Pencil



96 CHAPTER 5. ROOT-LOCUS ANALYSIS AND DESIGN

STEP 3. Draw the asymptotes for large values of K.

For our example,

σ
A

=
−4− 4 + 0

3− 0
= −8

3
= −2.67

and α = 3 =⇒ asymptotes at ±60◦ and an asymptote at 180◦. The asymptotes
at ±60◦ are shown dashed in Figure 5.11. Notice that they cross the imaginary
axis at ±4.62j. The asymptote at 180◦ was already found in Step 2.

Figure 5.11: Draw the asymptotes.

RULE 5. The root-locus departs from a complex pole pj at an angle
θd given by

θd =
∑
i

θzi −
∑
i6=j

θpi ± r(180◦) r = 1, 3, 5, · · ·

The root-locus arrives at a complex zero zj at an angle θa given by

θa =
∑
i

θpi −
∑
i6=j

θzi ± r(180◦) r = 1, 3, 5, · · ·

The most important use of this rule is to compute the angle of departure from a
complex pole. This angle of departure can sometimes be an aid in determining
the final shape of the root locus. To illustrate this rule consider the poles and
the zero shown in Figure 5.12. The vector angles at one complex pole p1 is also
shown in Figure 5.12. The radius of the circle around the pole p1 is actually very
small in relation to the distance to the zero and the other pole. The angles at a
test point s0, an infinitesimal distance from p1, must meet the angle criterion.
Therefore,

α− θ1 − θ2 = 180◦
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5.2. RULES & STEPS FOR PLOTTING THE ROOT-LOCUS 97

p1

s0

Figure 5.12: Determining the angle of departure.

and the angle of departure at pole p1 is

θ1 = α± 180◦ − θ2

Note that we select either +180◦ or −180◦ above to ensure that θ1 is always
selected to be in the range −180◦ < θ1 < +180◦.

STEP 4. Compute the departure and arrival angles.

First we take a test point s0 very near pole 2 at −4 + 4j and compute the
angle of G(s0). This situation is sketched in Figure 5.13. We select the test

Figure 5.13: Compute the angle of departure.

point close enough to pole 2 that the angles φ1 and φ3 to the test point can be
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98 CHAPTER 5. ROOT-LOCUS ANALYSIS AND DESIGN

considered the same as those angles to pole 2. Thus φ1 = 90◦ and φ3 = 135◦,
and φ2 can be calculated from the angle condition

−90◦ − φ2 − 135◦ = ±180◦

To ensure −180◦ < φ2 < +180◦ we have

−φ2 = 90◦ + 135◦ − 180◦

φ2 = −45◦

as shown in Figure 5.14. By the complex conjugate symmetry of the plots, the
angle of departure of the locus near pole 1 at −4 − 4j will be +45◦. Note for
a multiple pole of order q we must count the angle from the pole q times.

Figure 5.14: Actual angle of departure.

STEP 5.
Estimate (or compute) the points where the locus crosses
the imaginary axis.

The points where the root-locus intersect the imaginary axis of the s-plane, and
the corresponding values of K, may be determined by means of the Routh-
Hurwitz criterion. For the third-order example we are using, the characteristic
equation is

1 +
K

s[(s+ 4)2 + 16]
= 0

which is equivalent to

s3 + 8s2 + 32s+K = 0

The Routh array for this polynomial is
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5.2. RULES & STEPS FOR PLOTTING THE ROOT-LOCUS 99

s3 1 32

s2 8 K

s1 256−K
8

0

1 K

In this case we see that the s1 row coefficients are all zeros when K = 256
indicating a root on the imaginary axis. Thus K = 256 must correspond to
a solution at s = jω0 for some ω0. Substituting this data into the auxiliary
equation gives us

−8ω2
0 + 256 = 0

Clearly the solution is ω0 = ±
√

32 = ±5.66, which is plotted in Figure 5.15.

Figure 5.15: Find the imaginary axis crossing points.

RULE 5. The breakaway points σb are among the real roots of

dG(s)

ds
= 0

or, equivalently,

n(s)
d

ds
[d(s)]− d(s)

d

ds
[n(s)] = 0

where n(s) and d(s) are the numerator and denominator polynomials, respec-
tively, ofG(s). The breakaway points are points at which two (or more) branches
of the root locus leave the real axis. The example in Figure 5.2 provides an illus-
tration of a breakaway point. In this case, there is a breakaway point at s = −1.
Figure 5.16 shows both the root-locus and a plot of K as a function of real
values of s between 0 and −2. The maximum occurs at s = −1 for K = 1. At
the point where K = 1 the characteristic equation has a double root at s = −1.
This is the maximum gain for which the poles are real; higher gains result in
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100 CHAPTER 5. ROOT-LOCUS ANALYSIS AND DESIGN

0−2

0−1−2

Breakaway at s = −1

Maximum gain
at s = −1

Figure 5.16: Gain K as a function of s along the real axis.

complex roots. Notice in Figure 5.16 that the gain K, as a function of the real
roots s, must have a local maximum at the breakaway points, so that, with

K = − 1

G(s)

and s considered a real variable, we require

dK

ds
= 0 (5.13)

If we express G(s) as a ratio of two polynomials n(s) and d(s) the above equation
can be written as

dK

ds
=

d

ds

(
− 1

G(s)

)
=

d

ds

(
− d(s)

n(s)

)
= 0

The differentiation with respect to s, yields

d

ds

(
− d(s)

n(s)

)
= −

[
d(s)(−1)

1

n2(s)

d

ds
[n(s)] +

1

n(s)

d

ds
[d(s)]

]
Equating the right hand side of the equation above to zero implies

n(s)
d

ds
[d(s)]− d(s)

d

ds
[n(s)] = 0

It is important to point out that the condition for a breakaway point given in
(5.13) is necessary but not sufficient. In other words, all breakaway points on
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5.2. RULES & STEPS FOR PLOTTING THE ROOT-LOCUS 101

the root-locus must satisfy (5.13), but not all solutions of (5.13) are breakaway
points.

STEP 6. Determine the breakaway point σb.

In our example, G(s) is

G(s) =
1

s[(s+ 4)2 + 16]

and we have

n(s) = 1
dn(s)

ds
= 0

d(s) = s3 + 8s2 + 32s
d d(s)

ds
= 3s2 + 16s+ 32

the points of possible multiple roots or breakaway are given by

3s2 + 16s+ 32 = 0

or
s0 = −2.67± 1.89j

The breakaway point must be real and lies on the root-locus, hence, for this
example there is no breakaway point.

STEP 7. Complete the sketch.

The complete locus for our third-order example is drawn in Figure 5.17. It
combines all the results found so far, that is, the real axis segment, the number
of asymptotes and their angles, the angles of departure from the poles, and the
imaginary axis crossing points.

Figure 5.17: Complete the sketch.
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102 CHAPTER 5. ROOT-LOCUS ANALYSIS AND DESIGN

5.3 Examples

In all the examples to follow, G(s) is the transfer function of a system to be
controlled using constant-gain in the forward path, with K ≥ 0.

Find the root locus forExample 5.3

G(s) =
s+ 1

s2(s+ 9)

� Solution

STEPS 1 and 2. Mark the poles and zeros on the s-palne and draw the real axis
portion of the locus:

STEP 3. Draw the n−m = 3− 1 = 2 asymptotes:

φ
A

= ±r (180◦)

n−m
σ
A

=

∑
pi −

∑
z1

n−m

= ± (180◦)

2
=
−9− 0− (−1)

3− 1

= ±90◦ = −4

σ
A

STEP 4. We compute the departure angles from the poles. We draw a small
circle around the two poles at s = 0. The angles from the zero at −1 and from
the pole at −10 are both zero, and the angles from the two poles at the origin
are the same. Therefore, the root locus condition is

−2θd = r180◦ = ±90◦
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5.3. EXAMPLES 103

STEP 5. We compute the points where the locus crosses the imaginary axis:

1 +K
s+ 1

s2(s+ 9)
= 0

s3 + 9s2 +Ks+K = 0

The Routh array for this polynomial is

s3 1 K

s2 9 K

s1 9K −K
9

0

1 K

The entries in the first column are all positive if K > 0, so the equation has no
roots in the RHP for positive values of K.

STEP 6. We locate the points of multiple roots, which will include breakaway
and break-in points:

n(s) = s+ 1
dn(s)

ds
= 1

d(s) = s3 + 9s2 d d(s)

ds
= 3s2 + 18s

The possible multiple roots are at

(s+ 1)(3s2 + 18s)− (s3 + 9s2)(1) = 0

2s3 + 12s2 + 18s = 0

s = 0,−3,−3

The points of multiple roots are on the locus, but we have repeated roots in the
derivative, which indicates that we have three roots at the same place. Note we
can apply the rule of departure angles to the triple root at s = −3, we find that

180◦ − 3θd = r180◦

θd = 0◦,±120◦
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104 CHAPTER 5. ROOT-LOCUS ANALYSIS AND DESIGN

Figure 5.18: Root locus for G(s) =
(s+ 1)

s2(s+ 9)
.

STEP 7. The complete sketch is given in Figure 5.18. �

Find the root locus forExample 5.4

G(s) =
1

s(s+ 2)[(s+ 1)2 + 4]

� Solution

STEPS 1 and 2. Mark the poles and zeros on the s-palne and draw the real axis
portion of the locus:

STEP 3. Draw the asymptotes:

φ
A

= ±r (180◦)

4− 0
σ
A

=
−2− 1− 1− 0 + 0

4− 0

= ±45◦,±135◦ = −1
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5.3. EXAMPLES 105

STEP 4. The departure angle at the complex pole at −1 + 2j is

0− 116.6◦ − 63.4◦ − 90◦ − θd = ±180◦

θd = −90◦

We can observe at once that, along the line s = −1 + jω the angle criterion is
always satisfied. This is a special case since the angles of the real axis poles to
any point on this line will form an isosceles triangle and always add to 180◦.

STEP 5. We compute the crossings of the imaginary axis. The characteris-
tic equation is

s4 + 4s3 + 9s2 + 10s+K = 0

The Routh array for this polynomial is

s4 1 9 K

s3 4 10

s2 6.5 K

s1 65− 4K

6.5
0

1 K

In this case we see that the s1 row coefficients are all zeros when K = 16.25
indicating a root on the imaginary axis. Thus K = 16.25 must correspond to
a solution at s = jω0 for some ω0. Substituting this data into the auxiliary
equation gives us

−6.5ω2
0 + 16.25 = 0

Clearly the solution is ω0 = ±
√

2.5 = ±1.58.
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106 CHAPTER 5. ROOT-LOCUS ANALYSIS AND DESIGN

STEP 6. We locate possible multiple roots:

n(s) = 1
dn(s)

ds
= 0

d(s) = s4 + 4s3 + 9s2 + 10s
d d(s)

ds
= 4s3 + 12s2 + 18s+ 10

The possible multiple roots are at

4s3 + 12s2 + 18s+ 10 = 0

From step 4 we notice that the line at s = −1 + jω is on the locus, so there
must be a breakaway point at s = −1, which can be divided out. That is , we
can easily show that

4s3 + 12s2 + 18s+ 10 = (s+ 1)(4s2 + 8s+ 10) = 0

The quadratic has roots −1± 1.22j. Since these points are on the line between
the complex poles, they are points of multiple roots on the locus.

STEP 7. The complete sketch is given in Figure 5.19. Notice that we have
complex multiple roots. Branches of the locus come together at −1± 1.22j and
break away at 0◦ and 180◦. �

Sketching root loci relies heavily on experience. Figure 5.20 gives several loci
for low-order systems; these should be studied to familiarize yourself with some
of the characteristics of root loci.

Figure 5.19: Root locus for G(s) =
1

s(s+ 2)[(s+ 1)2 + 4]
.
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5.3. EXAMPLES 107

Figure 5.20: Loci for low-order systems.
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108 CHAPTER 5. ROOT-LOCUS ANALYSIS AND DESIGN

5.4 The complementary root locus

We now consider modifying the root-locus procedure to permit analysis of
negative values of K. Following are the rules for plotting a complementary
root-locus:

1. The root-locus is symmetric with respect to the real axis.

2. The root-locus includes all points on the real-axis to the left of an even
number of poles and zeros.

3. The root-locus originates on the poles (for K = 0) and terminate at the
zeros (as K → −∞) of G(s).

4. If G(s) has α zeros at infinity, the root-locus will approach α asymptotes
as K approach −∞. The angles of asymptotes are

φ
A

= ±2lπ

α
l = 0, 1, 2, · · ·

and the asymptotes intersect the real axis at

σ
A

=

∑
pi −

∑
zi

α

5. The angle of departure from a pole pj is given by

θd =
∑
i

θzi −
∑
i6=j

θpi + 2lπ

and arrives at a zero zj at an angle

θa =
∑
i

θpi −
∑
i6=j

θzi + 2lπ

6. The breakaway points σb are roots of

dG(s)

ds
= 0

ConsiderExample 5.5
G(s) =

s

(s− 0.5− 2j)(s− 0.5 + 2j)

� Solution The root locus and the complementary root locus are shown in Fig-
ure 5.21. In the complementary root-locus, the locus on the real axis occurs to
the left of an even count of poles and zeros. Since zero is considered even, root
locus on the real axis will occur only to the right of the zero at the origin. The
break-in points are s = ±2.06. Thus the break-in point for the complementary
root locus is at s = 2.06. After the break-in, one closed-loop pole migrates to
the zero at the origin and the other to the right toward infinity.
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5.4. THE COMPLEMENTARY ROOT LOCUS 109

Figure 5.21: Root locus for G(s) =
s

(s− 0.5− 2j)(s− 0.5 + 2j)
,−∞ < K <∞.

Consider Example 5.6

G(s) =
s+ 1

s(s+ 4)(s+ 10)

� Solution The complementary root locus on the real axis occurs to the right
of the pole at the origin, between the zero at s = −1 and the pole at s = −4,
and to the left of the pole at s = −10. The number of zeros at infinity, α = 2, so
there are two asymptotes at 0◦ and 180◦. The root locus and the complementary
root locus are shown in Figure 5.22.

Figure 5.22: Root locus for G(s) =
s+ 1

s(s+ 4)(s+ 10)
,−∞ < K <∞.
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110 CHAPTER 5. ROOT-LOCUS ANALYSIS AND DESIGN

5.5 Root locus design

The root-locus is a plot of all possible locations for roots to the equation
1 + KG(s) = 0 for some real positive value of K. The purpose of design is to
select a particular value of K that will meet the design specifications. Consider
for example the locus of

G(s) =
1

s[(s+ 4)2 + 16]

For this transfer function, the locus was plotted in Figure 5.17 and is repeated
here in Figure 5.23. On Figure 5.23 the lines corresponding to a damping ratio
of ζ = 0.5 are sketched, and the points where the locus crosses these lines are
marked with (•). Suppose we wish to set the gain so that the poles are located
at the dots. This corresponds to selecting the gain so that two of the closed-loop
poles have a damping ratio of ζ = 0.5. What is the value of K when a root is

Figure 5.23: Root locus for G(s) =
1

s[(s+ 4)2 + 16]
showing calculations of gain K.
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5.6. DYNAMIC COMPENSATION 111

at the dot? The value of K is given by

K =
1

|G(s0)|

where s0 is the coordinate of the dot. On the figure we have plotted three vectors
marked s0 − s1, s0 − s1, and s0 − s3, which are the vectors from the poles of
G(s) to the point s0. (Since s1 = 0, the first vector equals s0.) Therefore,

K =
1

|G(s0)|
= |s0||s0 − s2||s0 − s3|

By measuring the lengths of these vectors and multiplying the lengths together,
provided that the scale of the imaginary and real axes is identical, we can
compute the gain to place the roots at the dot (s = s0). Using the scale of the
figure we estimate that

|s0| ≈ 4

|s0 − s2| ≈ 2.1

|s0 − s3| ≈ 7.7

Thus the gain is estimated to be

K = 4(2.1)(7.7) ≈ 65

We conclude that if K is set to the value 65, then a root of 1 +KG(s) will be
at s0, which has a damping ratio of 0.5. Another root is at the conjugate of s0.
Where is the third root? The third root lies on the branch of the locus along the
negative real axis. Usually we take a test point, compute a trial gain, and repeat
this process until we found the point where K = 65. However, in this case we
can make use of polynomial properties that the open-loop and closed-loop sum
is the same if m < n − 1. If G(s) has at least two more poles than zeros, we
have ∑

open-loop poles =
∑

closed-loop poles (5.14)

From Figure 5.23 we estimate that s0 = −2 + 3.5j. Since the starting point
was at s = −4 + 4j, the root has moved approximately two units to the right.
The conjugate has moved an equal distance. The third root must be moved far
enough to the left to keep the sum in (5.14) fixed, so the third root must have
moved 2 + 2 units to the left of where it began at s = 0. We have marked the
new location at −4 with the third dot. Considering this point as a test point
one can check if the gain at this point is K = 65.

If the closed-loop dynamic response as determined by the root locations is satis-
factory, then the design can be completed by gain selection alone. However if no
value of K satisfies all the constraints, as is typically the case, then additional
modifications are necessary to meet the system specifications.

5.6 Dynamic compensation

If the plant dynamics are of such a nature that a satisfactory design cannot
be obtained by a gain adjustment alone, then some modification or compensa-
tion of the plant dynamics are needed. A variety of compensation techniques are

27

Dr. Ahmed Abdolkhalig 
The University of Tobruk 
Department of Electrical Engineering 
www.ahmed.ucoz.org

Ahmed Abdolkhalig
Pencil



112 CHAPTER 5. ROOT-LOCUS ANALYSIS AND DESIGN

available, only two such techniques that have been found simple and effective
will be discussed here. These are lead and lag compensation. Lead compen-
sation acts mainly to speed up a response by lowering rise time and decreasing
the transient overshoot. Lag compensation is usually used to improve steady-
state accuracy of the system.

Compensation with a transfer function of the form

D(s) = K
s+ z

s+ p

is called lead compensation if |z| < |p| and lag compensation if |z| > |p|. Com-
pensation is typically placed in series with the plant in the feedforward path, as
shown in Figure 5.24.

Figure 5.24: Feedback system with compensation.

The characteristic equation of the system in Figure 5.24 is

1 +D(s)G(s) = 0

1 +KL(s) = 0

where K and L(s) are selected to put the equation in root-locus form as before.

5.6.1 Lead compensation

To see the basic effect of lead compensation on a system, we first consider a sim-
plified proportional control for which D(s) = K. If we apply this compensation
to a second order system with transfer function

G(s) =
1

s(s+ 1)

The root locus with respect to K is shown as the solid-line portion of the locus
in Figure 5.25. Also shown in Figure 5.25 is the locus produced by proportional
plus derivative control, where D(s) = K(s+ 2). The modified locus is the circle
sketched with dashed lines. Notice that the effect of the zero is to move the
locus to the left, toward the more stable part of the s-plane.

The trouble with choosing D(s) based on only a zero is that the physical re-
alization would contain a differentiator that would greatly amplify the high
frequency noise present from the sensor signal. To remedy this we simply add
a high frequency pole, perhaps at s = −20 to give

D(s) = K
s+ 2

s+ 20
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5.6. DYNAMIC COMPENSATION 113

Figure 5.25: Root locus for G(s) =
1

s(s+ 1)
without compensation (solid line), and

with compensation D(s) = s+ 2 (dashed lines).

The resulting transfer function is thus lead compensation. The root locus with
such compensator is shown in Figure 5.26.

Figure 5.26: Root locus for G(s) =
1

s(s+ 1)
with lead compensation D(s) =

s+ 2

s+ 20
.

To see the effect of the pole on the compensation consider moving the pole fur-
ther to the right at s = −10, i.e, nearer to the zero. The root locus is shown
in Figure 5.27. Notice the effect of moving the pole nearer to the zero, we are
reducing the effect of the zero we placed earlier. In fact, we are moving back
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114 CHAPTER 5. ROOT-LOCUS ANALYSIS AND DESIGN

Figure 5.27: Root locus for G(s) =
1

s(s+ 1)
with lead compensation D(s) =

s+ 2

s+ 10
.

to the uncompensated shape. If we move the pole too far to the left, the mag-
nification of noise at the output of D(s) is too great, since the differentiator
will dominate the compensator. Therefore, the choice of pole location is a com-
promise between the conflicting effects of noise suppression and compensation
effectivness.

Find a compensation forExample 5.7

G(s) =
1

s(s+ 1)

that will provide two closed-loop dominant poles having damping ratio ζ = 0.707
and settling time of 2s. Furthermore, determine the value of the gain K to
achieve this.

� Solution The uncompensated root locus is shown in Figure 5.25. We need
Ts = 2, which implies that ζωn = 2. Hence, the first requirement is satisfied
if we force the root locus to pass through the point −2 + j2 corresponding to
ωn = 2

√
2 and ζ = 0.707. Notice that we need to move the root locus to the

left. This is achieved with a lead compensator of the form

D(s) = K
s+ z

s+ p

Selecting values of z and p is done by trial and error. In general the compen-
sator zero is placed in the neighborhood of the real part of closed-loop pole and
the compensator pole is placed at a distance 3 to 20 times the value of the zero
location.

The compensator pole position can now be determined by the angle criterion as
shown in Figure 5.28

α− (θ1 + θ2 + β) = ±180◦

90◦ − (135◦ + 116◦)± 180◦ = β

30

Dr. Ahmed Abdolkhalig 
The University of Tobruk 
Department of Electrical Engineering 
www.ahmed.ucoz.org

Ahmed Abdolkhalig
Pencil



5.6. DYNAMIC COMPENSATION 115

−1−2p

s0 = −2 + j2

Figure 5.28: Angles for lead compensation.

Hence, β = 19◦, and to determine the pole location p, we have

tan(19◦) =
2

|p− 2|

which implies p = −7.8. Finally, the value of the gain K can be determined
using the magnitude criterion

K =
1

|G(s0)|

=
|s0||s0 + 1||s0 + p|

|s0 + z|

=

√
8
√

5
√

37.64

2
≈ 19.4

The final design is then

D(s) = 19.4
s+ 2

s+ 7.8
�

Although the design is complete and two of the closed-loop poles are already
known, namely, the poles at s = −2± j2. However the lead compensator intro-
duces a third closed-loop pole. In this case the easiest way to locate this third
pole is to make use of (5.14) since m < n− 1. Thus, the third closed-loop pole
is at s = −4.8.

Design a lead compensator for the system given by the transfer function Example 5.8

G(s) =
1

s(s+ 1)

that will provide a closed-loop damping ratio ζ = 0.5 and natural frequency
ωn > 7 rad/sec.
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116 CHAPTER 5. ROOT-LOCUS ANALYSIS AND DESIGN

� Solution Since ζ = 0.5 and ωn = 7, the closed loop poles are given by
−ζωn±jωn

√
1− ζ2 = −3.5±j6.062. Let us choose z = −3.5. The compensator

pole position can now be determined by the angle criterion as shown in Figure
5.29

90◦ − 112.41◦ − 120◦ − θp = −180◦

Hence the angle subtended by the compensator pole with the closed loop pole
is 37.59◦.

p −3.5

Figure 5.29: Angles for lead compensation.

To determine the pole location, we have

tan(37.59◦) =
2

x

which implies p = −11.37. Finally we use the magnitude criterion to calculate
the gain K ≈ 75. �

5.6.2 Lag compensation

In this section we consider the design of lag compensators. As in the preceding
sections, we assume that the compensator transfer function is first order and is
given by

D(s) = K
(s+ z)

(s+ p)
|z| > |p|

It was shown that the effect of the addition of lead compensation is to shift
the root locus to the left in the s-plane. However, lag compensators will tend
to shift the root locus to the right in the s-plane, that is, toward the unstable
region. Thus, in general, the shift to the right must be minimal to minimize the
destabilizing effects. This small shift is assured by placing the pole and the zero
of the compensator very close to each other. In fact we choose to place the com-
pensator pole near the origin to approximate a perfect integrator. This should
increase the system type by 1 that might be needed to improve steady-state
error constants. The compensator zero is placed nearby so that the pole-zero
pair does not significantly interfere with the dynamic response of the overall
system. Thus, we want an expression for D(s) that will yield a significant gain
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5.6. DYNAMIC COMPENSATION 117

at s = 0 to raise an error constant and that is nearly unity (no effect) at the
higher frequencies.

We now illustrate lag design with an example.

Consider a system whose open loop transfer function is given by Example 5.9

G(s) =
K

s(s+ 2)

Design a lag compensator so that the dominant poles of the closed loop system
are located at s = −1± j and the steady state error to a unit ramp input is less
than 0.2.

� Solution For the specification that the steady state error of the system
must not exceed 0.2, we have

Kv = lim
s→0

sKD(s)G(s)

= lim
s→0

sK
(s+ z)

(s+ p)

1

s(s+ 2)

=
Kz

2p

We require the steady state error to be less than 0.2, i.e.,
2p

Kz
< 0.2. Let us

choose p = 0.01, therefore we have Kz = 0.1. We know that the closed loop
poles s = −1± j lie on the root locus, hence

K = −s(s+ 2)(s+ 0.01)

(s+ z)

∣∣∣∣
s=−1+j

Solving for K and z, we get K = 1.88 and z = 0.0532. Therefore, the lag
compensator is given by

D(s) = 1.88
(s+ 0.532)

(s+ 0.01)
�
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