
Chapter 6
Frequency Response Analysis

Frequency response methods are among the most useful techniques available for
control system analysis and design. There is no one systematic design proce-
dure for all control problems, rather, the different techniques complement each
other. Root-locus techniques give powerful indicators for closed-loop transient
response. Unfortunately, we need accurate, hence expensive, plant models to
benefit from the root locus techniques. One of the advantages of the frequency
response methods is that the response of the system can be obtained from mea-
surements on the physical system without deriving the system transfer function.
In fact, it is possible to design a control system without the need for a transfer
function model.

In this chapter we consider frequency-response analysis methods, the impor-
tant tools of Bode and Nyquist plots are presented.

6.1 Frequency response

In Chapter 3, the time responses of first and second order systems were
considered. In this section we give meaning to steady-state response of systems
to sinusoidal inputs, which is called the frequency response. Suppose that the
input to a system with transfer function G(s) is the sinusoid

r(t) = A cosωt

Then

R(s) =
As

s2 + ω2

and

Y (s) = G(s)R(s) = G(s)
As

(s− jω)(s+ jω)

We can expand this expression into partial fractions of the form

Y (s) =
k1

s− jω
+

k2

s+ jω
+ F (s) (6.1)
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120 CHAPTER 6. FREQUENCY RESPONSE ANALYSIS

where F (s) is the collection of all terms in the partial fraction that originate
in the denominator of G(s). It is assumed the system poles are real, distinct
and are in the LHP implying that the terms in F (s) will decay to zero with
increasing time. Therefore, only the first two terms in (6.1) contribute to the
steady-state response. Using the cover-up method to find k1 and k2 we have

k1 = (s− jω)Y (s)
∣∣
s=jω

=
1

2
AG(jω)

k2 = (s+ jω)Y (s)
∣∣
s=−jω =

1

2
AG(−jω)

and k2 is seen to be the complex conjugate of k1. For any given value of ω,
k1 and k2 are complex numbers and will find it convenient to express them in
polar form as

k1 =
A

2
|G(jω)|ejφ

where |G(jω)| is the magnitude and φ = G(jω). Then y(t) = L−1{Y (s)} and
its sinusoidal steady-state value (i.e. lim

t→∞
y(t)) is

yss(t) = k1e
jωt + k2e

−jωt

=
A

2
|G(jω)|ejφejωt +

A

2
|G(jω)|e−jφe−jωt

= A|G(jω)|e
j(ωt+φ) + e−j(ωt+φ)

2
= A|G(jω)| cos(ωt+ φ)

since |G(jω)| = |G(−jω)|.

This analysis can be summarized as follows. If a sinusoid input is applied to a
system all of whose poles have a negative real part, the steady state response
is a scaled, phase-shifted version of the input. The scaling factor called the
steady-state gain is |G(jω)| and the phase shift is the phase of G(jω).

Consider the system with the transfer functionExample 6.1

G(s) =
5

s+ 2

and an input 7 cos 3t. Then

G(s)
∣∣
s=j3

=
5

2 + j3
= 1.387 −56.3◦

and the steady-state output is given by

yss(t) = (1.387)(7) cos(3t− 56.3◦) = 9.79 cos(3t− 56.3◦) �

We see then that, from the complex function G(jω), we can obtain the steady-
state response for any sinusoidal input, provided that the system is stable. We
call G(jω), 0 ≤ ω ≤ ∞, the frequency response function. We usually plot G(jω)
versus ω in some form to characterize the frequency response. We illustrate two
forms by a simple example. Suppose we have a system with transfer function

G(s) =
1

s+ 1
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6.1. FREQUENCY RESPONSE 121

The frequency response function of this system is given

G(jω) =
1

1 + jω
=

1√
1 + ω2

− tan−1(ω) (6.2)

One common method of displaying this frequency response is in the form of a
polar plot. In such a plot, the magnitude and angle of the frequency response
function are plotted in the complex plane as the frequency, ω, is varied. For
the function of (6.2), to construct a polar plot we first evaluate the function for
values of ω. As an example, a table of these values is given in Table 6.1. Next

Table 6.1: Frequency response

ω G(jω)

0 1.000 0◦

0.5 0.894 −26.6◦

1.0 0.707 −45◦

1.5 0.555 −56.3◦

2.0 0.447 −63.4◦

3.0 0.316 −71.6◦

5.0 0.196 −78.7◦

10 0.100 −84.3◦

∞ 0.000 −90◦

these values are plotted in the complex plane, as shown in Figure 6.1.

Figure 6.1: Frequency response.
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122 CHAPTER 6. FREQUENCY RESPONSE ANALYSIS

Note that mathematically, the frequency response is a mapping from the s-plane
to the G(jω)-plane. The upper half of the jω-axis which is a straight line, is
mapped into the complex plane via the mapping G(jω). A second form for
displaying the frequency response is to plot the magnitude and phase of G(jω)
versus ω. These plots for the example above are shown in Figure 6.2.

Figure 6.2: Frequency response.

6.2 Bode diagrams

This section presents a method for plotting a frequency response that is
different from the two methods given in the first section of this chapter. This
method results in a plot of magnitude versus frequency and phase versus fre-
quency, but the frequency scale is logarithmic. In addition, the magnitude is
also plotted on a logarithmic scale. The plot that is presented here is called a
Bode plot, or a Bode diagram.

We develop the Bode diagram by using as an example the second-order transfer
function

G(s) =
K(1 + τ3s)

(1 + τ1s)(1 + τ2s)
=

K(1 + s/ω3)

(1 + s/ω1)(1 + s/ω2)
(6.3)

where it is assumed that both poles and the zeros are real. Note that we have
defined a constant ωi equal to the reciprocal of τi. The reason for using the
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6.2. BODE DIAGRAMS 123

symbol for frequency will become evident later. Also, we call the value ωi a
break frequency, for a reason to be explained later.

First we form the magnitude of G(jω)

|G(jω)| = |K||1 + jω/ω3|
|1 + jω/ω1||1 + jω/ω2|

(6.4)

Next we use the property of logarithms given by

log

(
ab

cd

)
= log ab− log cd = log a+ log b− log c− log d

Also we define the unit decibel1 (dB) as dB = 20 log a, where a is a gain. A
number-decibel conversion line is given in Figure 6.3. As a number increases by
a factor of 10, the corresponding decibel value increases by a factor of 20. This

Figure 6.3: Number-decibel conversion.

may be seen from the following

20 log(a× 10n) = 20 log a+ 20n

Note that when expressed in decibels, the reciprocal of a number differs from
its value only in sign; that is,

20 log a = −20 log
1

a

1The unit was first defined as bel, however, this unit proved to be too large, and hence a
decibel (1/10 of a bel) was selected as a more useful unit.
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124 CHAPTER 6. FREQUENCY RESPONSE ANALYSIS

We plot the magnitude of the frequency response in decibels; that is we plot
20 log |G(jω)|. For the transfer function of (6.4),

20 log |G(jω)| = 20 log |K|+ 20 log

∣∣∣∣1 +
jω

ω3

∣∣∣∣
− 20 log

∣∣∣∣1 +
jω

ω1

∣∣∣∣− 20 log

∣∣∣∣1 +
jω

ω2

∣∣∣∣ (6.5)

The effect of plotting in decibels is then to cause the individual factors in the
numerator to add to the total magnitude and the individual factors in the de-
nominator to subtract from the total magnitude.

Consider now the general frequency dependent term in (6.5)

20 log

∣∣∣∣1 +
jω

ωi

∣∣∣∣ = 20 log

√√√√[1 +

(
ω

ωi

)2
]

(6.6)

This term is plotted versus logω in Figure 6.4. Note that the value of the term at
the frequency ωi (called the break frequency) is equal to 20 log

√
2 = 3.0103. We

Figure 6.4: First-order term.

usually approximate this value as 3dB and say that, for a general first-oder nu-
merator term, the value of the magnitude is equal to 3dB at the break frequency.
For a first-order denominator term, the value is equal to −3dB at its break fre-
quency. Note that the first-order term has a value of 20 log

√
101 = 20.04, or

approximately 20dB, at the frequency 10ωi.

Accurate Bode diagrams are usually done using digital computers. However,
there are situations in which approximate sketches of a Bode diagram are ade-
quate. We now develop the approximations for the first-order terms. Consider
the first order term of (6.6)

20 log

√√√√[1 +

(
ω

ωi

)2
]

For frequencies very small compared to the break frequency ωi, we have

20 log(1) = 0 ω � ωi
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6.2. BODE DIAGRAMS 125

Figure 6.5: First-order approximation.

and for frequencies very large compared to ωi,

20 log

(
ω

ωi

)
= 20 logω − 20 logωi ω � ωi

For low frequencies the term is approximated by a straight line (the ω-axis). For
high frequencies and if ω = 10ωi the difference between the logarithmic gains is
20dB. This represents a line that has a slope of 20dB per decade of frequency.
Equating the above high-frequency and low-frequency expressions shows that
the two straight lines intersect at ω = ωi. The two terms are plotted in Figure
6.5(a). Comparing this figure with the exact curve of Figure 6.4, we see that the
exact curve approaches the straight lines asymptotically, as is shown in Figure
6.5(b). As an approximation in sketching, we quite often extend the straight
lines to the intersection at ω = ωi and use this straight line approximation in-
stead of the exact curve. The frequency ωi is called the break frequency because
of the break in the slope at that frequency, as shown in Figure 6.5(b).

In constructing frequency responses, we consider the following types of transfer
function factors:

1. Constant gain

2. Poles and zeros at the origin

3. Real poles and zeros not at the origin

4. Complex poles and zeros

We now consider each of these factors in order. First we develop the magnitude
plots, and then we develop the phase plots.

6.2.1 Constant gain

For the case of a constant gain the magnitude is

20 log |K|

this term does not vary with frequency. The two possible cases are shown in
Figure 6.6. If |K| is greater than unity, the magnitude is positive; if |K| is less
than unity, the magnitude is negative. In either case, the magnitude plot is a
straight line with a slope of zero.
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126 CHAPTER 6. FREQUENCY RESPONSE ANALYSIS

Figure 6.6: Constant-gain term.

6.2.2 Poles and zeros at the origin

For the case that the transfer function has a zero at the origin, the magnitude
of this term is given by

20 log |jω| = 20 logω

Hence a plot of this term is a straight line, with a slope of 20dB per decade of
frequency, that intersects the ω-axis at ω = 1. The plot of this term is shown
in Figure 6.7(a).

Figure 6.7: Zero and pole at s = 0.

For the case that the transfer function has a pole at the origin, the magnitude
of the term is given by

20 log

∣∣∣∣ 1

jω

∣∣∣∣ = −20 logω

and the curve is the negative of that for a zero at the origin. Thus the curve is
a straight line with a slope of −20dB/decade that intersects the log ω axis at
ω = 1. This curve is shown in Figure 6.7(b). For the case of Nth-order zeros at
the origin, the magnitude is

20 log |(jω)N | = 20 logωN = 20N logω

Thus the curve is still a straight line that intersects the ω-axis at ω = 1, but
the slope is now 20N dB per decade. For example if we have two zeros at the
origin the slope is 40dB/decade and -40dB/decade if two poles are at s = 0.
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6.2. BODE DIAGRAMS 127

6.2.3 Nonzero real poles and zeros

The case of real poles and zeros was considered previously. For a term of this
type

20 log

∣∣∣∣1 +
jω

ωi

∣∣∣∣ = 20 log

√√√√[1 +

(
ω

ωi

)2
]

≈

{
0 ω ≤ ωi
20 logω − 20 logωi w > ωi

This straight line approximation is shown in Figure 6.8(a) for a zero and in
Figure 6.8(b) for a pole. Note that the terms have been normalized to have
a dc gain of unity, or 0 dB. This is convenient otherwise each term will have
a different low-frequency gain, and the Bode diagram is somewhat difficult to
plot.

Suppose that first-order term is repeated, that is, suppose that we have an
Nth-order term of the form (1 + s/ωi)

N . The magnitude term is then given by

20 log

[
1 +

(
ω

ωi

)2
]N/2

≈

{
0 ω � ωi

20N logω/ωi ω � ωi
(6.7)

Figure 6.8: First-order terms.
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128 CHAPTER 6. FREQUENCY RESPONSE ANALYSIS

The straight line approximation for this term is shown in Figure 6.9 for the case
of a numerator term. It is seen that for ω > ωi, the line has a slope of 20N .
For a given denominator term, the slope is −20N .

Figure 6.9: Bode diagram for repeated zeros.

Plot the Bode diagram for the system with the transfer functionExample 6.2

G(s) =
10(s+ 1)

(s+ 10)

� Solution First we convert the function to the form of (6.3)

G(s) =
(1 + s)

(1 + s/10)

The break frequency of the numerator is ω = 1, and the freak frequency of the
denominator is ω = 10. The numerator term, the denominator term, and the
total magnitude (which, from (6.5), is the sum of the two terms) are shown in
Figure 6.10. �

Figure 6.10: Bode diagram for Example 6.2.

As a second example, consider the transfer functionExample 6.3

G(s) =
200(s+ 1)

(s+ 10)2

� Solution We rewrite the transfer function as

G(s) =
2(1 + s)

(1 + s/10)2
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6.2. BODE DIAGRAMS 129

The bode diagram has three terms. The first term is the constant gain, which
adds a term of value 20 log 2 = 6dB at all frequencies. The second term is the
zero term with break frequency at ω = 1, and the third term is the second-order
pole at ω = 10. The three terms are plotted in Figure 6.11. �

Figure 6.11: Bode diagram for Example 6.3.

A third example, with Example 6.4

G(s) =
1000(s+ 3)

s(s+ 12)(s+ 50)

� Solution The transfer function is rewritten as

G(s) =
5(1 + s/3)

s(1 + s/12)(1 + s/50)

The constant gain term is obtained from

(1000)(3)

(12)(50)
= 5

The constant gain term is now 20 log 5 = 14dB, and the five terms of the Bode
diagram are as shown in Figure 6.12.

6.2.4 Phase diagrams

Before we consider the final type of terms that can appear in a Bode diagram,
we construct the phase diagrams for the three types of terms already considered.
First, for the constant gain term, the phase angle is either 0◦ or ±180◦. If the
gain term is positive, the phase angle is 0◦; if the gain term is negative, the
phase angle can be plotted as either 180◦ or −180◦. For a zero of the transfer
function at the origin, the phase angle is 90◦, since

s|s=jω = jω = ω 90◦

In a like manner, a pole at the origin gives a phase angle of −90◦, since

1

s

∣∣∣∣
s=jω

=
1

jω
=

1

ω
−90◦
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130 CHAPTER 6. FREQUENCY RESPONSE ANALYSIS

Figure 6.12: Bode diagram for Example 6.4.

For a real zero of the transfer function, with the zero not at the origin, the term
is given by

(
1 +

s

ωi

) ∣∣∣∣
s=jω

= 1 +
jω

ωi
=

√
1 +

(
ω

ωi

)2

Θ(ω)

where

Θ(ω) = tan−1

(
ω

ωi

)
Figure 6.13 shows the phase Θ plotted for various values of the ratio ω/ωi. The
exact curve is approximatted with the straight line shown in Figure 6.13. The
straight line approximation for the phase characteristic breaks from 0◦ at the
frequency 0.1ωi and breaks back to the constant value of 90◦ at 10ωi. Note that
the phase characteristic for a pole is the negative of that for a zero, since, for a
pole,

1

1 + s/ωi

∣∣∣∣
s=jω

=
1

1 + jω/ωi
=

1√
1 + (ω/ωi)2

Θ(ω)

where

Θ(ω) = − tan−1

(
ω

ωi

)
Consider again the system of Example 6.1Example 6.5

G(s) =
(1 + s)

(1 + s/10)
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6.2. BODE DIAGRAMS 131

Figure 6.13: Phase characteristics of a real zero.

� Solution For the zero ωi = 1, hence the straight line approximation to
the phase characteristic breaks at ω = 0.1(1) = 0.1 and breaks back at ω =
10(1) = 10. The pole has ωi = 10 and breaks at ω = 0.1(10) = 1 and breaks
at ω = 10(10) = 100. These characteristics, along with the total phase diagram
(which is the sum of the two characteristics), are plotted in Figure 6.14.

As a second example illustrating the phase characteristic of the Bode diagram, Example 6.6
consider the system of Example 6.3, with the transfer function

G(s) =
5(1 + s/3)

s(1 + s/12)(1 + s/50)

The phase characteristics of the various terms, along with the total phase char-
acteristic of the system, are given in Figure 6.15. �

Figure 6.14: Example 6.5.
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132 CHAPTER 6. FREQUENCY RESPONSE ANALYSIS

Figure 6.15: Bode phase diagram for Example 6.6.

As a final example, the complete Bode diagram will be constructed for theExample 6.7
transfer function

G(s) =
(1− s)

(1 + s/10)

For the zero at s = 1,

1− jω =
√

(1 + ω2) Θ(ω) Θ(ω) = tan−1(−ω)

The magnitude characteristic is as shown in Figure 6.16. The phase of the
zero term varies from 0◦ to −90◦, because of the minus sign on the imaginary
part. The total phase characteristic is then as shown in Figure 6.16. The
characteristics at the extremes in frequency are verified through the calculations

lim
ω→0

G(jω) = 1 0◦

lim
ω→∞

G(jω) =
−jω
jω/10

= −10 = 10 −180◦ �

6.2.5 Complex poles and zeros

In this section we consider an additional term that can be encountered in con-
structing a Bode diagram. We consider poles or zeros of the form

s2 + 2ζωns+ ω2
n 0 ≤ ζ < 1 (6.8)

For convenience in plotting we normalize (6.8), to have a dc gain of unity; this
is accomplished by factoring out ω2

n. Hence, we consider

1 + 2ζ
s

ωn
+

(
s

ωn

)2

(6.9)

The magnitude and phase of this expression for s = jω is an involved function
of the damping ratio ζ, and in general it does not lend itself to approximations
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6.2. BODE DIAGRAMS 133

Figure 6.16: Bode diagram of Example 6.7.

by straight lines.

Consider first the case that ζ = 1. For this case, (6.9) has two real equal
zeros

1 + 2ζ
s

ωn
+

(
s

ωn

)2 ∣∣∣∣
ζ=1

=

(
1 +

s

ωn

)2

(6.10)

Since the zeros are real, this case is covered by the methods given in the preced-
ing sections. The straight-line approximations for this case are given in Figure
6.17, along with the exact curves. For cases in which 0 < ζ < 1, the asymptotic
approximations to the frequency response curves are not accurate and the errors
can be large for low values of ζ. This is because the magnitude and phase of
(6.9) depend on both the break frequency and the damping ratio ζ. Noting that
the exact magnitude of (6.9) in dB is

20 log

∣∣∣∣1 + 2ζ
jω

ωn
+

(
jω

ωn

)2 ∣∣∣∣ = 20 log

√(
1− ω2

ω2
n

)2

+

(
2ζ

ω

ωn

)2
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134 CHAPTER 6. FREQUENCY RESPONSE ANALYSIS

Figure 6.17: Bode diagrams of a repeated zero.

The approximation to the frequency response may be obtained as follows: for
low frequencies such that ω � ωn, the magnitude becomes

20 log 1 = 0 dB

The low-frequency asymptote is thus a horizontal line at 0 dB. For ω � ωn, the
magnitude becomes

20 log
ω2

ω2
n

= 40 log
ω

ωn

the equation for the high frequency asymptote is a straight line having the slope
−40 dB/decade. The high-frequency asymptote intersects the low-frequency one
at ω = ωn. The two asymptotes just derived are independent of the value of ζ.
The phase for second order zeros is

tan−1

 2ζ
ω

ωn

1− ω2

ω2
n

 ≈
{

0 ω � ωn

180◦ ω � ωn
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6.2. BODE DIAGRAMS 135

Figure 6.18 illustrates some exact curves for several values of ζ between zero and
unity for complex zeros. Once again, the curves for complex poles are obtained
by inverting these curves.

Figure 6.18: Bode diagrams of complex zeros.

For the case that ζ < 0.3, the straight line approximations are very inaccurate
and are seldom used. Instead exact curves such as in Figure 6.18 are used. An
example is now given to illustrate complex terms ina Bode diagram.

Consider the transfer function Example 6.8

G(s) =
200(s+ 1)

s2 + 4s+ 100
=

2(s+ 1)

(s/10)2 + 2(0.2)(s/10) + 1

For the complex poles, ζ = 0.2 and ωn = 10. We do not expect the straight-line
approximation to be very accurate. Both the straight line approximation and
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136 CHAPTER 6. FREQUENCY RESPONSE ANALYSIS

the exact Bode diagram are given in Figure 6.19. The maximum error in the
magnitude diagram for the straight line approximation is seen to be approxi-
mately 8 dB. Note also the very large errors in the straight line approximation
for the phase.

6.3 Nyquist plots

Frequency response information can be presented in a various forms of which
Bode plot is one. The same information can be presented by the Nyquist plot also
known as the polar plot. The Nyquist plot of the frequency response function
G(jω) is a plot of the magnitude of G(jω) versus the phase angle of G(jω) on
polar coordinates as ω is varied from zero to infinity. An example of such a plot
is shown in Figure 6.20. The projection of G(jω) on the real and imaginary
axes are its real and imaginary components. An advantage in using a Nyquist
plot is that it depicts the frequency response characteristics of a system over

Figure 6.19: Bode diagram for Example 6.8.
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6.3. NYQUIST PLOTS 137

Figure 6.20: Nyquist plot.

the entire frequency range in a single plot. Table 6.2 shows examples of Nyquist
plots of simple transfer functions.

6.3.1 Nyquist criterion

In designing a control system, we require that the system is stable. In what
follows we shall show that the Nyquist plot indicates not only whether a system
is stable but also the degree of stability of a stable system. In this section we
consider closed loop systems of the type shown in Figure 6.21. The closed loop

Figure 6.21: Closed loop system.

transfer function is given by

H(s) =
G(s)

1 +G(s)

and the characteristic equation is given by

1 +G(s) = 0
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138 CHAPTER 6. FREQUENCY RESPONSE ANALYSIS

We can write the closed loop transfer function as

H(s) =
G(s)

1 +G(s)
=

n(s)/d(s)

1 + n(s)/d(s)

=
n(s)

d(s) + n(s)

Table 6.2: Nyquist plots of simple transfer functions.

20

Dr. Ahmed Abdolkhalig 
The University of Tobruk 
Department of Electrical Engineering 
www.ahmed.ucoz.org

Ahmed Abdolkhalig
Pencil



6.3. NYQUIST PLOTS 139

Furthermore, we can write the characteristic equation as

F (s) = 1 +G(s) = 1 +
n(s)

d(s)
= 0

=⇒ F (s) =
d(s) + n(s)

d(s)
= 0

That is

1 The poles of F (s) are the open loop poles (i.e., poles of G(s)).

2 The zeros of F (s) are the closed loop poles (i.e., poles of H(s)).

Therefore, to determine closed loop stability, we need to know the number of
right-half plane zeros of F (s).

In order to introduce the Nyquist criterion, we consider some mappings from
the complex s-plane to the F (s)-plane. For example consider the function

F (s) =
s− 0.5

s(s− 1)(s+ 4)

Suppose F is evaluated around the simple, circular closed contour Ω of radius
2 in the s-plane as shown in Figure 6.22(a). Evaluating F at each point on Ω
generates the closed loop contour Γ shown in Figure 6.22(b). Table 6.3 provides
the values of F at some key points along the contour Ω. The closed contour Γ
could then be approximated by simply plotting and connecting these points. It
is woth noting thet Γ as shown in Figure 6.22 is not drawn to scale.

Note that the contour in the s-plane, where F was evaluated, was traversed
in the counterclockwise direction, and enclosed the circular region in the s-
plane. Further, the contour Γ generated by the evaluation of F along Ω evolves
in the clockwise direction. Also note the contour Γ encircles the origin of the
F -plane.

(a) (b)

Figure 6.22: (a) Curve Ω in the s-plane and (b) resulting curve Γ in the F -plane.
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Table 6.3: Magnitude and phase of F (s) along Γ.

θ F (2 θ)

0◦ 0.125 0◦

20◦ 0.13 −20◦

40◦ 0.16 −48◦

60◦ 0.17 −81◦

80◦ 0.18 −180◦

100◦ 0.2 −138◦

120◦ 0.19 −162◦

140◦ 0.19 −175◦

160◦ 0.2 −179.7◦

180◦ 0.21 180◦

Based on the above observations, one can ask is there a relationship between
the number of poles and zeros encircled by Ω in the s-plane and the number
and direction of encirclements of the origin in the F -plane. In the above map-
ping, the counterclockwise encirclement of two poles and one zero resulted in
one clockwise encirclement of the origin.

The relationship between the contours in the two complex planes is given by
Cauchy’s theorem (known as Cauchy’s principle of argument) twhich states
(given here without proof) ”for a given contour in the s-plane that encircles
P poles and Z zeros of the function F (s) in a clockwise direction, the resulting
contour in the F-plane encircles the origin a total of N times in a clockwise
direction, where N = Z − P”. This theorem explains the mapping in Figure
6.22, since Z = 1 and P = 2, hence, N = −1. Therefore, the contour Γ encircles
the origin once and the negative sign implies opposite direction to the contour Ω.

We now develop the Nyquist criterion. Suppose that we let the mapping of
F (s) be the characteristic polynomial of the closed-loop system of Figure 6.21;
that is;

F (s) = 1 +G(s)

Furthermore, let the curve Ω be as shown in Figure 6.23(a). This curve, which
is composed of the imaginary axis and an arc of in finite radius, completely
encircles the right half of the s-plane. Then, in Cauchy’s principle of argument,
Z is the number of zeros of the system characteristic polynomial in the right
half of the s-plane. Also recall that Z is the number of poles of the closed-loop
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Figure 6.23: Nyquist diagram.

system in the RHP. Therefore, Z must be zero for the system to be stable. P
is the number of poles of the characteristic polynomial in the right half of the
s-plane and thus is the number of poles of the open loop function G(s) in the
right half plane, since the poles of 1 +G(s) are also those of G(s).

The curve in Figure 6.23(a) is called the Nyquist path, and a typical mapping
is shown in Figure 6.23(b). The mapping encircles the origin two times in the
clockwise direction, and from Cauchy’s principle

N = 2 = Z − P

or
Z = 2 + P

Since P is the number of poles of a function inside the Nyquist path, it cannot
be a negative number. This in this example, Z is greater than or equal to 2,
and the closed loop system is unstable.
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To simplify the application of the Nyquist criterion a modification is usually
made. Instead of plotting 1 + G(s), as in Figure 6.23(b), we plot just G(s).
The resulting plot has the same shape but is shifted one unit to the left, as
shown in Figure 6.23(c). Hence, rather than plotting 1 +G(s) and counting en-
circlements of the origin, we get the same result by plotting G(s) and counting
encirclements of the point −1+j0. The resultant plot of the open-loop function
G(s) is called the Nyquist diagram. Note that we are plotting the open-loop
function to determine closed-loop stability.

A simple example is given to illustrate the Nyquist criterion.

Consider the system with open-loop transfer functionExample 6.9

G(s) =
5

(s+ 1)3

Then

G(jω) =
5

(1 + jω)3

An evaluation of this function is given in Table 6.4 for certain values of ω, and a
plot of theses values is shown in Figure 6.24. The dc gain, G(0), is equal to 5 and
is shown as part I. The solid curve, part II, is obtained directly by plotting the
values of Table 6.4. However, note as ω is increased the magnitude of each factor
in the denominator has an increasing magnitude. Therefore |G(jω)| decreases
from 5 to 0. On the other hand, the angle of each factor in the denominator
increases with ω from 0◦ to 90◦. Therefore, G(jω decreases from 0◦ to −270◦.

To evaluate N(number of clockwise encirclements of −1) we need to calculate
the intersection with the real axis, the point G(jω1). This can be calculated
using the Routh-Hurwitz stability ciretrion as follows:

Table 6.4: Frequency response

ω G(jω)

0 5.00 0◦

0.5 3.58 −79.8◦

1.0 1.77 −135◦

1.5 0.85 −169◦

2.0 0.45 −190.3◦

5.0 0.038 −236.1◦

20 0.0006 −261.3◦
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Figure 6.24: Nyquist diagram for Example 6.9.

1. Introduce a gain K into G(s) and evaluate the characteristic equation

1 +KG(s) = 1 +
5K

(s+ 1)3
= 0

=⇒ s3 + 3s2 + 3s+ 1 + 5K = 0

2. Form the Routh array

s3 1 3

s2 3 1 + 5K

s1 (8− 5K)/3 0 =⇒ K < 1.6

s0 1 + 5K 0 =⇒ K > −0.2

It is important to note here that the Nyquist diagram in Figure 6.24 is
for K = 1. Thus the system is stable. However, we are interested in the
frequency ω1.

3. When K = 1.6, the system is marginally stable (the Nyquist diagram
intersects the −1 point). Thus 1.6×G(jω1) = −1 and

G(jω1) = −1/1.6 = −0.625

The frequency response intersects the negative real axis at the point
−0.625, therefore, the −1 point is not encircled by the frequency response.
Hence, N = (number of clockwise encirclements of −1) = 0.

4. To find ω1, we form the auxiliary equation

3s2 + 1 + 5× 1.6 = 3s2 + 9 = 3(s2 + 3)
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The roots are s = ±j
√

3 = ±jω1. We can check the value of the frequency
response at ω1 as:

G(j
√

3) = 5/(1 + j
√

3)3 = −0.625

This value checks that derived earlier.

Finally to apply the Nyquist criterion for

G(s) =
5

(s+ 1)3

The Nyquist equation is
Z = N + P

The value of P = (number of unstable poles of G(s)) = 0, since G(s) has no
poles in the right halh plane. The number of encirclements of the −1 point in
the G(s)-plane, N , is zero. Then the number of unstable closed loop poles is
given by

Z = N + P = 0

and the closed loop system is stable.

The Nyquist criterion is very important, since it allows us to determine the
stability of the closed loop system from the knowledge of the frequency response
of the open loop function.

6.3.2 Poles at the origin

In the preceding section, the condition for the application of Cauchy’s principle
of argument to determine stability is that the open loop function, which we
assume to be G(s), has no poles or zeros on the Nyquist path. When G(s) has
a pole at the origin of the s-plane (at s = 0), this point will be on the Nyquist
path. It is still possible to determine closed loop stability, but the Nyquist
contour must be modified. We simply introduce a detour in the Nyquist path

Figure 6.25: Detour around poles at the origin.
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around the origin if G(s) has a pole there. The resulting path is shown in Figure
6.25(a). This detour, shown as part I in the figure, is chosen to be very small, so
that no right half-plane poles or zeros can occur within the region excluded by
the detour. This is illustrated in Figure 6.25 (b), where the vicinity of the origin
is shown with a greatly expanded scale. The detour is chosen to be circular with
a radius that approaches zero in the limit. Then, on the detour,

s = lim
ρ→0

ρejθ, −90◦ ≤ θ ≤ 90◦

Since G(s) has poles at the origin, the magnitude of G(s) will be very large on
the detour of the Nyquist path. However, we will still be able to sketch the
Nyquist diagram, but not to scale.

Suppose G(s) has the transfer function Example 6.10

G(s) =
1

s(s+ 1)

We begin the Nyquist path at s = ρ, that is, on the detour with θ = 0◦, and let
θ increases. On part I of the Nyquist path,

G(s)|s=ρejθ =
1

ρejθ(ρejθ + 1)
0◦ ≤ θ ≤ 90◦

and

lim
ρ→0

G(ρejθ) = lim
ρ→0

1

ρejθ
= lim
ρ→0

1

ρ
−θ

Hence part I of the nyquist path generates a very large arc on the Nyquist
diagram, as shown in Figure 6.26. This arc is swings past the −90◦-axis slightly,
since the pole at s = −1 contributes a very small negative angle to the Nyquist
diagram. Recall that the Nyquist diagram cannot be drawn to scale.

For part II of the Nyquist path, s is equal to jω, and this portion of the Nyquist
diagram is a plot of the function

G(jω) =
1

jω(jω + 1)

Figure 6.26: Nyquist diagram.
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The magnitude function |G(jω) decreases from a very large value to zero, and
the angle function G(jω) decreases from a value slightly more negative than
−90◦ to −180◦. The resulting Nyquist plot is shown as part II of Figure 6.26.

Note again that the Nyquist diagram cannot be drawn to scale for this example,
since we must show very large magnitudes and on the same figure show the −1
point. The shape of the Nyquist diagram in the region shown enclosed by a
dashed circle is not important, since this region is at a very large magnitude;
the shape of the Nyquist diagram in the region cannot affect the number of
encirclements of the −1 point. Finally applying the Nyquist criterion for this
example

Z = N + P = 0 + 0 = 0

and the system is stable for all gains K, K > 0.

As a second example of an open-loop function with poles at the origin, considerExample 6.11
the transfer function

G(s) =
1

s2(s+ 1)

Since the transfer function has two poles at the origin, the Nyquist path must
detour around the origin as shown in Figure 6.27(a). On this detour (part I),

G(s)|s=ρejθ =
1

ρ2ej2θ(ρejθ + 1)
0◦ ≤ θ ≤ 90◦

and

lim
ρ→0

G(ρejθ) = lim
ρ→0

1

ρ2e2jθ
= lim
ρ→0

1

ρ2
−2θ

Thus the magnitude of the function is very large, and its angle rotates from 0◦ to
slightly past −180◦, as shown in Figure 6.27(b). This rotation past −180◦-axis
occurs because the pole at s = −1 contributes very small negative angle to the
function. For part II of the Nyquist path, as ω increases from a very small value
to a very large value, the magnitude function decreases from a very large value

Figure 6.27: Nyquist diagram for Example 6.11.
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to zero, and the angle decreases from −180◦ to −270◦. The resulting Nyquist
diagram is then as shown in Figure 6.27(b). As shown in the previous example,
the shape of the Nyquist diagram in the region enclosed by the dashed circle
is not important, since the shape does not affect the number of encirclements.
From the diagram we see that there are two encirclements of the −1 point and
hence N = 2. Since the open-loop transfer function has no poles inside the
Nyquist path, P = 0 and

Z = N + P = 2 + 0 = 2

Thus the closed loop transfer function has two unstable poles.

Difficulties can occur in counting the number of encirclements of the −1 point
for complex Nyquist diagrams. For example, how many encirclements of the
−1 point occur for the Nyquist diagram in Figure 6.28? The easiest way is to
draw a ray from the −1 point in any convenient direction. One such ray is
shown in Figure 6.27. The number of clockwise encirclements of the −1 point

Figure 6.28: Counting encirclements on the Nyquist diagram.

is then is then equal to the number of crossings of this ray by the Nyquist
diagram, in the clockwise direction, minus the number of crossings of the ray
in the counterclockwise direction. For Figure 6.28, there is one crossing in each
direction, and thus the number of encirclements is zero. If the −1 point were
at a point x in this figure rather than at the point shown, then there are two
clockwise crossings and no counterclockwise crossings. For this case, the Nyquist
diagram has two clockwise encirclements of the −1 point.

6.4 Relative Stability

As seen in the previous section, the Nyquist diagram was used to determine
if a system was stable or unstable. Although stability by itself is an important
issue, an acceptable transient response of a system is not less important. Gen-
erally, we require not only that a system be stable but also that it be stable by
some degree of safety.

We define the relative stability of a system in terms of the closeness of the
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148 CHAPTER 6. FREQUENCY RESPONSE ANALYSIS

Nyquist diagram to the −1 point in the complex plane. Two such measures are
commonly used, the gain and phase margins.

6.4.1 The gain Margin

The gain margin is the factor by which the open-loop gain of a stable system
must be changed to make the system marginally stable. In Figure 6.29, we
denote the value of the Nyquist diagram at the −180◦ crossover as −α. If the
open-loop function is multiplied by the gain of K = 1/α, the Nyquist diagram
intersects the −1 point, and the closed-loop system is marginally stable. The
1/α value is called the gain margin and is usually given in decibels. If the
Nyquist diagram has multiple −180◦ crossovers, the gain margin is determined
by that point which results in the gain margin with the smallest magnitude, in
decibels.

Figure 6.29: Relative stabilty margins.

6.4.2 The Phase Margin

The phase margin is the magnitude of the minimum angle by which the Nyquist
diagram must be rotated in order to intersect the −1 point. The phase margin
is indicated by the angle φm in Figure 6.29. The magnitude of the Nyquist
diagram, G(jω), is unity at the frequency that the phase margin occurs. This
frequency is indicated as ω2 in Figure 6.29, and thus |G(jω)| = 1. The phase
margin is then

φm = G(jω2)− 180◦

6.4.3 Relative stability and the Bode Plots

Although the gain and phase margins may be obtained directly from a Nyquist
diagram, the are more often determined from a Bode diagram. For example, the
Bode diagram for the system whose Nyquist diagram is shown in Figure 6.29
is given in Figure 6.30. The gain margin occurs at the frequency at which the
phase angle of G(jω) is −180◦. This frequency is evident on the Bode diagram
of Figure 6.30 and is labeled as ω1 (we sometimes call this frequency the phase
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Figure 6.30: Relative stabilty margins on a Bode diagram.

crossover frequency). The gain margin is the reciprocal of the magnitude of
G(jω1). Since the effect of taking the logarithm of a reciprocal of a number is

log

(
1

|G(jω1)|

)
= − log |G(jω1)|

and is expressed in decibels as the value dBα in Figure 6.30. The phase margin
occurs at the frequency ω2 at which the magnitude of the open-loop gain is
unity, or 0 dB (ω2 is sometimes called the gain crossover frequency). The phase
margin φm is the difference between the angle of G(jω2) and −180◦, as shown
in Figure 6.30.

In practical control system design, the straight line approximations for the Bode
diagram are usually inadequate to determine the stability margins. Control
engineers have found from experience that an 8 dB gain margin (a factor of
2.51) is usually adequate. In addition, a 50◦ phase margin is often adequate.
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6.5 Frequency Response Design

6.5.1 Gain compensation

6.5.2 Phase-Lead Compensation

As seen in chapter 5 a lead compensator has a transfer function of the form

D(s) =
K(s+ z)

(s+ p)

with |z| < |p|. The frequency response of the compensator D(s) is

D(jω) =
K(jω + z)

(jω + p)
=

(Kz/p)[j(ω/z) + 1]

[j(ω/p) + 1]
=
K1(1 + jωατ)

(1 + jωτ)
(6.11)

where τ = 1/p, p = αz, and K1 = K/α. We wish to determin the values of p and
z such that certain design criteria will be satisfied for the closed loop system.
The Bode diagram of the phase-lead compensator has the general form shown in
Figure 6.31. We see that the phase-lead controller is a form of high-pass filter,
in that the high frequencies are amplified relative to the low frequencies. The
controller introduces gain at high frequencies, which in general is destabilizing.
However, the positive phase angle of the controller tends to rotate the Nyquist
diagram away from the −1 point and thus is stabilizing. Hence we must carefully
choose the pole ans zero locations so that the stabilizing effect of the positive
phase angle dominates.

The phase contributed by the lead compensator is given by

φ = tan−1(αωτ)− tan−1(ωτ)

z p

z p

20 log α

φm

Figure 6.31: Bode diagram of phase-lead compensator.
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or equivalently

φ = tan−1

(
ω

|z|

)
− tan−1

(
ω

|p|

)
It can be shown that the frequency at which the phase is maximum is

ωm =
√
|z||p| = 1

τ
√
α

and

log ωm =
1

2
(log |z|+ log |p|)

Note that the maximum phase lead occus halfway between the pole and zero
frequencies on the logarithmic frequency scale, see Figure 6.31. For example, a
lead compensator with a zero at s = −2 and a pole at s = −10, would yield a
maximum phase lead at ωm =

√
2.10 = 4.47 rad/sec To obtain an equation for

the maximum phase-lead angle, φm, the frequency response in (6.11) is rewritten
as

D(jω) =
[1 + (ωτ)2α] + j(αωτ)

[1 + (ωτ)2α]

and hence the phase angle is

φ = tan−1 αωτ − ωτ
1 + (ωτ)2α

Then, substituting the frequency for the maximum phase angle, ωm = 1/τ
√
α,

we have

tanφm =
(α/
√
α)− (1/

√
α)

1 + 1
=
α− 1

2
√
α

Note that

sinφm =
α− 1

α+ 1
(6.12)

A plot of φm versus α is shown in Figure 6.32. The maximum value of the phase
shift φm is then a function of α only.

Figure 6.32: Maximum phase angle φm versus α for a phase-lead compensator.
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Consider an open-loop transfer functionExample 6.12

G(s) =
4

s(s+ 1)

We wish to design a compensator such that the closed loop system will satisfy
the following requirements:

• velocity error constant, Kv = 20

• phase margin = 50◦

• gain margin ≥ 10 db

We shall design a lead compensator D(s) of the form

D(s) = K
s+ z

s+ p

The first step in the design is to adjust the gain K to provide the required
velocity error constant. First, we need to rewrite D(s) as

D(s) =
K1[1 + (s/z)]

[1 + (s/p)]

where K1 = Kz/p. Next

Kv = lim
s→0

sD(s)G(s) = s
4K1(1 + s/z)

s(s+ 2)(1 + s/p)
= 2K1 = 20

or K1 = 10. Define

G1(s) = K1G(s) =
40

s(s+ 2)

We shall next plot the Bode diagram of G1(s), and is shown in Figure 6.33
From this plot, the phase margin is found to be 17◦. The gain margin is ∞ dB.
Since the specification calls for a phase margin of 50◦, the additional phase lead
necessary to satisfy the phase margin requirement is 33◦.

Note that the addition of a lead compensator will modify both phase and mag-
nitude. The magnitude curve in the Bode diagram is modified and the gain
crossover frequency is shifted to the right. A small amount of safety (usually
10%) is added to compensate for this shift in the gain crossover frequency.
Therefore, we assume that φm, the maximum phase lead required, is approxi-
mately 37◦.

Next, using (6.12) we evaluate the value of α, we have

α− 1

α+ 1
= sin 37◦

and thus α = 4.023.
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Figure 6.33: Bode diagram of G1(s) =
40

s(s+ 2)
.
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