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MagneticForcesandTorque:

Magnetic Force on a Moving Charge

Electric charges moving in a magnetic field experience a force due to
the magnetic field. Given a point charge ¢ moving with velocity # in a
magnetic flux density B, the vector magnetic force F,, on the charge is
given by

F,=q(uxB)  (N)

Note that the force is normal to the plane containing the velocity vector and
the magnetic flux density vector. Also note that the force is zero if the

charge is stationary (#=0).
Example (Force on a point charge moving in a magnetic field)

Determine the vector magnetic z
force on a point charge +¢q moving
at a uniform velocity # =u_y ina
uniform magnetic flux density
defined by B =B 2.

F_=q(uxB)
=q[(u,y)*(B,2)] X

=qu B X

Given a charge moving in an electric field and a magnetic field, the
total force on the charge is the superposition of electric and magnetic
forces. This total force equation is known as the Loreniz force equation.
The vector force component due to the electric field (F,) is given by F,=
gE. The total vector force on the point charge is (Lorentz force - F) is

( Lorentz force)

F:Fe+Fm=q(E+uxB) (N) equation
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Magnetic Forces on Current-Carrying Conductors

Given that charge moving in a magnetic field experiences a force, a
current carrying conductor in a magnetic field also experiences a force. The
current carrying conductor (modeled as a line current) can be subdivided
into differential current elements (differential lengths).

The charge-velocity product for a moving point
charge can be related to an equivalent differential
length of line current.

A 1
dll - q ' T 7 717 ! l
qu=gq ) l=-—t—a’ll=lla’l =1dl (A-m)
The equivalence of the moving point charge and the dl’

differential length of line current yields the equivalent
magnetic force equation.

F_=q(uxB) = dF =dl'(I*B)

The total force on the current carrying conductor is found by summing the
forces on all of the differentials elements of current (integrating along the
length of the conductor).

F = [(IxB)dl'
/

Given a steady current, the magnitude of the current is constant along the
length of the conductor so that the magnetic force can be written as

F _=1((dl'<B)
/
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Torque on a Current Loop

Given the change in current directions around a closed current loop,
the magnetic forces on different portions of the loop vary in direction.
Using the Lorentz force equation, we can show that the net force on a
simple circular or rectangular loop is a torque which forces the loop to align
its magnetic moment with the applied magnetic field.

Consider the rectangular current loop shown below. The loop lies in
the x-y plane and carries a DC current /. The loop lies in a uniform
magnetic flux density B given by

B=By+B2
The loop consists of four distinct vector current segments.
I =1y I=-Ix I=-Iy I, =1x

Given a uniform flux density and a DC current along straight current
segments, the magnetic force on each conductor segment can be simplified
to the following equation.

F, =f(I><B)a’l’
L

- (IxB)fdl/
L

- (I*B)L /
@
I

I/
/ ll
X

The forces on the current segments can be determined for each component
of the magnetic flux density.
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F, = (IpxB.2)l, = B, %

F,
F,=(-1%xB2)l,=IB I,y . e

F, @ F,

F, =(-1pxB %)l = -1B I, %
3 z 1 z"1
e
F,=(I%xB2)l, = -IB L,y

Forces due to B, (net force = vector torque T)

F,=(IyxB,y)l, =0

F,=(-I%xB )L, = -IB L2 j/ _ -
@ g %
o< ;

F,=(-1yxB,y)], =0

F,=(I%xB,y)l, = 1B L%

The vector torque on the loop is defined in terms of the force magnitude
(IB,1,), the torque moment arm distance (/,/2), and the torque direction
(defined by the right hand rule):

!
T =2(IB,,) (51') (%) = -IB I, ,% = -IAB %

where A=1,1, is the loop area. The vector torque can be written in a general
way in terms of the vector magnetic moment (m) of the loop.

m=IAn (vector magnetic moment)
where A is the unit normal to the loop B m
(defined by the right hand rule as \}4‘ 1
applied to the current direction). The / > /
vector torque in terms of the magnetic —
T

moment 18
T=mxB = mBsianT=IABsin6¢iT

Note that the torque on the loop tends to align the loop magnetic moment
with the direction of the applied magnetic field.

4
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Forces Between Current Carrying Conductors

Given that any current carrying conductor produces a magnetic field,
when two current carrying conductors are brought into close proximity,
each conductor lies in the magnetic field of the other conductor. Therefore,
both current carrying conductors exert a force on the opposite conductor.

Example (Force between line currents)

Determine the force/unit length on a line current /; due to the
magnetic flux produced by a parallel line current /, (separation distance =
d) flowing in the opposite direction.

The magnetic flux density
at the location of /; due to the
current /, is

B(x:o y:O):_l.._L.{%_(-—x)
2 ’ 2nd
The force on a length / of current
1, due to the flux produced by 7,

1S

I
F, =f(Il><B2)dz/

_l . kL,
-/ (IIZ)X(znd )
0
11,
2ﬂ:d( )fdz
wil !

I,
(x=0,y=0)
X
dz’

P
A
[ 1,
o
v (x=0,y=d)
4
< >
d



donohoe



Dr. Ahmed Abdolkhalig

The University of Tobruk
Department of Electrical Engineering
www.ahmed.ucoz.org

The force per unit length on the current /, is

F

1 _ LU

I ond’

The force on a length [ of current I, due to the flux produced by /, is

/
F2=f(12><Bl)dz/
0

21td

The force per unit length on the current /, is

F, BLL

I  27nd

Note that the currents repel each other given the currents flowing in
opposite directions. If the currents flow in the same direction, they attract

each another.
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MagnetizatiorandMagneticMaterials

Magnetization

Just as dielectric materials are polarized under the influence of an
applied electric field, certain materials can be magnetized under the
influence of an applied magnetic field. Magnetization for magnetic fields
is the dual process to polarization for electric fields. The magnetization
process may be defined using the magnetic
moments of the electron orbits within the
atoms of the material. Each orbiting electron
can be viewed as a small current loop with an
associated magnetic moment.

An unmagnetized material can be
characterized by a random distribution of the
magnetic moments associated with the electron orbits. These randomly
oriented magnetic moments produce magnetic field components that tend
to cancel one another (net H=0). Under the influence of an applied
magnetic field, many of the current loops align their magnetic moments in
the direction of the applied magnetic field.

Unmagnetized Magnetized
(random moments) (aligned moments)
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If most of the magnetic moments stay aligned after the applied magnetic
field is removed, a permanent magnet is formed.

A small current loop is commonly referred to as a magnetic dipole.
The far field electric field of the electric dipole (produced during
polarization) is functionally the same as the magnetic field of the magnetic
dipole (produced during magnetization).

E=_7F [ZCosear + sin@ae] (electric dipole)
4ner’

B--HF" [2cos@ar + sin@ae] (magnetic dipole)
4mr’

The preceding equations assume the dipole is centered at the coordinate
origin and oriented with its dipole moment along the Z-axis.

The parameters associated with the magnetization process are duals
to those of the polarization process. The magnetization vector M is the
dual of the polarization vector P and is defined as the magnetic dipole
moment per unit volume.

Magnetization Polarization
o (magnetic moment) p- ql (dipole moment)
v unit volume v unit volume
sza(H+M)=u0urH=pH D=¢ E+P=€ € E=€E
ur=1+%=1+xm er=1+€0E=1+xe
M=y H P=y,¢€E

Note that the magnetic susceptibility yx,, is defined somewhat differently
than the electric susceptibility x,. However, just as the electric
susceptibility and relative permittivity are a measure of how much
polarization occurs in the material, the magnetic susceptibility and relative
permeability are a measure of how much magnetization occurs in the
material.
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Magnetic Materials

Magnetic materials can be classified based on the magnitude of the
relative permeability. Materials with a relative permeability of just under
one (a small negative magnetic susceptibility) are defined as diamagnetic.
In diamagnetic materials, the magnetic moments due to electron orbits and
electron spin are very nearly equal and opposite such that they cancel each
other. Thus, in diamagnetic materials, the response to an applied magnetic
field is a slight magnetic field in the opposite direction. Superconductors
exhibit perfect diamagnetism (),,=- 1) at temperatures near absolute zero
such that magnetic fields cannot exist inside these materials.

Materials with a relative permeability of just greater than one are
defined as paramagnetic. In paramagnetic materials, the magnetic
moments due to electron orbit and spin are unequal, resulting in a small
positive magnetic susceptibility. Magnetization is not significant in
paramagnetic materials. Both diamagnetic and paramagnetic materials are
typically linear media.

Materials with a relative permeability much greater than one are
defined as ferromagnetic. Ferromagnetic materials are always nonlinear.
As such, these materials cannot be described by a single value of relative
permeability. If a single number is given for the relative permeability of
any ferromagnetic material, this number represents an average value of W,.

' i < linear
Diamagnetic u,<l1 } : B-uH
Paramagnetic u,>1 linear
Ferromagnetic w>1 } nonlinear B=p(H)H

Ferromagnetic materials lose their ferromagnetic properties at very high
temperatures (above a temperature known as the Curie temperature).

The characteristics of ferromagnetic materials are typically presented
using the B-H curve, a plot of the magnetic flux density B in the material
due to a given applied magnetic field /.
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The B-H curve shows the initial magnetization curve along with a

curve known as a hysteresis loop. The initial magnetization curve shows
the magnetic flux density that would result when an increasing magnetic
field is applied to an initially unmagnetized material. An unmagnetized
material is defined by the B=H=0 point on the B-H curve (no net magnetic
flux given no applied field). Asthe magnetic field increases, at some point,
all of the magnetic moments (current loops) within the material align
themselves with the applied field and the magnetic flux density saturates
(B,). If the magnetic field is then cycled between the saturation magnetic
field value in the forward and reverse directions (+H,,), the hysteresis loop
results. The response of the material to any applied field depends on the
initial state of the material magnetization at that instant.

Initial Magnetization Curve

A Hysteresis loop

10
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Magnetic Boundary Conditions

The fundamental boundary conditions involving magnetic fields
relate the tangential components of magnetic field and the normal
components of magnetic flux density on either side of the media interface.
The same techniques used to determine the electric field boundary
conditions can be used to determine the magnetic field boundary
conditions. The tangential magnetic field boundary condition is found by
applying Ampere’s law on a path that straddles the media interface while
the normal magnetic flux boundary condition is found by applying Gauss’s
law for magnetic fields to a volume straddling the media interface. The
resulting boundary conditions are shown below.

Tangential Magnetic Field

AY
s s <
(Uy,€,0 ~
_(HI 1,01) v ey
y>0 : : a
O @®——® ®—(e O, ®©o—® ® O—@O—O—O—O—® ®
(12,€2,02) H,
\ A
y<0 Surface currentJ, | |
> —> A
Ax >

A x [ H - H ] =J | Vector boundary condition relating the magnetic field
1 2 § ~ and surface current at a media interface.

where 7 is a unit normal to the interface pointing into region 1.

11
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Normal Magnetic Flux Density

Az
Bnl
| A
Az
(l-l' 1 ,€ 1 :0 ]) >
z>0 Y
/ (H2,€2,0,) Y
X z<0 A /
< > Ax
A
Y BnZ
B =B The normal components of magnetic flux density

nz are continuous across a media interface.

12


donohoe



Dr. Ahmed Abdolkhalig

The University of Tobruk
Department of Electrical Engineering
www.ahmed.ucoz.org

Inductors and Inductance

An inductor is an energy storage device that stores energy in an
magnetic field. A inductor typically consists of some configuration of
conductor coils (an efficient way of concentrating the magnetic field). Yet,
even straight conductors contain inductance. The parameters that define
inductors and inductance can be defined as parallel quantities to those of
capacitors and capacitance.

Inductor

Stores energy in
a magnetic field

LE_Z_\..
I

Inductance
Definition

L = Inductance (H)

Capacitance
Definition

C

A =Flux linkage (Wb)
I = Current (A)

A=foB-ds=Nq;m

Capacitor

Stores energy in
an electric field

C = .Q
V
= Capacitance (F)
QO = Charge (C)
V = Voltage (V)

The flux linkage of an inductor defines the total magnetic flux that
links the current. If the magnetic flux produced by a given current links
that same current, the resulting inductance is defined as a self inductance.
If the magnetic flux produced by a given current links the current in another
circuit, the resulting inductance 1s d%ﬁned as a mutual inductance.
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Solenoid

A solenoid is a cylindrically shaped current carrying coil. The
solenoid is the magnetic field equivalent to the parallel plate capacitor for
electric fields. Just as the parallel plate capacitor concentrates the electric
field between the plates, the solenoid concentrates the magnetic field within
the coil. For the purpose of determining the solenoid magnetic field, the
solenoid of length / and radius a which is tightly wound with N turns can
be modeled as an equivalent uniform surface current on the cylinder

surface.
" z 4
a. 4.
z=112 — ><—-——] 2=l — I
; N—-
b -QJS
1
H D #
b —
A
—t
N turns B, H > B H
D —rt
E —_
S —_—
s I —
b e e
z=-i2 z=-l2 - j/
| hS_Ollelfloéc_1 - Equivalent uniform
ength = /, radius = a surface current model
number of turns = N J = NI/l
[}
current =/

The equivalent uniform surface current density (J/,) for the solenoid 1s
found by spreading the total current of N/ over the length /.

J =) - Nf@

The Biot-Savart law integral to determine the magnetic field of the solenoid
equivalent surface current 1s

H~4nff

(RR)
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we choose the field point P on the solenoid axis (z-axis).

J, = -]ﬂ&) z

-4
ds' = ad'dz’ 2= =4
R=z% "NRR
R =af+z'% £ | Rl P

R-R'=-af+(z-2')Z2 R'/
R,=|R-R'|=ya+(z =2y y
/ i

X

The cross product in the numerator of the
Biot-Savart law integral 1s

z=-] K7

J % (R-R") = [-]-\-’li’

(f)) x[-af+(z-z')%]
= —]-V-l-{ [a2+(z—z')f]

The Funit vector written in terms of rectangular coordinate unit vectors is
F=cosdp’'X+sind’'y

The Biot-Savart law integral for the solenoid becomes

0 L0
n 2n _]_\7_1[(2 z )cosd) X+(z-z )smd) y+az]
i T [ 2 N2 3/2/ add’dz’
1720 [a +(z-2") ]
] Nlazzf’ff do’ dz'
4l Lo [ +(Z ZI)2]3/2
Nla®, . . 'f dz'
-=zem [ z
41l S [a2+(z z’)2]3/2
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&Yetfaining z' integration is the same form as that found for the current
segment on the z-axis. The result of the integration is

2 -
g Na®, 1 [ z+1/2 z-1/2 }

20 |Ja?e(z+12)  Jal+(z-1/2)
:NI[ z+1/2  z-1/2 }2

200 JaZw(z+12)F  a?+(z-1/2)

The magnetic field at the center of the solenoid (z=0) is

NI
21

H =

[ . NI .
Z= Z

Ja2+(1/2) 2/ a?+(1/2)

At either end of the solenoid (z=+1/2,-1/2), the magnetic field is

_ NI
21

A

[ ;= NI
Ja?+1? 2ya?+1?
For a long solenoid (/>a), the approximate magnetic field values at the
center and at the ends of the solenoid are

H = NI a, (center) H=—a, (at either end)

) )

Thus, the magnetic field
at the ends of a long
solenoid is approximately
half that at the center of
the solenoid. However,
the magnetic field over
the length is a long
solenoid is relatively | | o
constant. At the ends of S A B 1: 0
the long solenoid, the R
magnetic field falls o
rapidly to about one-half a4 s 2 4 o 1 2 s 4 s
of the peak value.

04 bt S

O b S A AN -
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Example (Self inductance / long solenoid)

Given the long solenoid (/> a), the magnetic field throughout the
solenoid can be assumed to be constant.

NI ~ NI
= B—HH—P‘T =12

A

z

According to the definition of inductance,
the inductance of the long solenoid 1s

L = .1__\._ = qum N turns

I I

The total magnetic flux through the
solenoid is

z=-12—

v =ffB-ds =BA = p—]-\—]llnaz

Inserting the total magnetic flux expression into the inductance equation
yields

2 2 2 2
- pN]Ilna _ uNlna (H)

Note that the inductance of the long solenoid is directly proportional to the
permeability of the medium inside the core of the solenoid. By using a
ferromagnetic material such as iron as the solenoid core, the inductance can
be increased significantly given the large relative permeability of a
ferromagnetic material.

(long solenoid)

17
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Toroid

Another commonly encountered magnetic energy storage geometry
is the toroid. A toroid is formed by wrapping a conductor around a ring of
uniform cross-section (typically circular cross-section). The distance from
the center of the ring to the center
of the ring cross-section 1s
defined as the mean radius r,.
Given a circular cross-section of
radius a, if the mean radius is
large relative to the radius of the
cross section (r,>a), then the
toroid may be viewed as a long
solenoid bent into the shape of a
circle (the magnetic field within
the toroid may be assumed to be

uniform). Application of
Ampere’s law on the mean radius
path gives

fH-dl = qu,dz - H, fdlz Hy(277,) = Lypipneq = NI
L L L

Solving for the toroid magnetic field yields

H, - NI _ NI
2nr,
where /=277, is the equivalent length of the toroid. The magnetic field at
any point within the toroid is the same as that found at the center of the

long solenoid. Thus, the self-inductance of the toroid is the same as the
equivalent long solenoid (replace [ with 27tr,).

2.2 2.2
L= p]jﬂ:a = p‘];]ra (toroid)

The primary advantage of the toroid over the solenoid is the confinement
of the magnetic field within the toroid as opposed to the solenoid which
produces magnetic fields external to the coil. Also, the toroid does not
suffer from the end effects (fringing) seen in the solenoid.

18
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Coaxial Transmission Line

The magnetic field between the conductors of coaxial transmission
line was shown using Ampere’s law to be

I

o (a<r<b)
2T

H =

where I is the total current in each conductor (flowing in opposite
directions in the two conductors). The self inductance of the coaxial
transmission line is found by determining the total magnetic flux that links
the transmission line current (total flux linkage). The flux linkage for the
coaxial transmission line is found by integrating the magnetic flux density
between the conductors over the surface S shown in the figure below.

The inductance of a length [ of coaxial transmission line is

L= % = i‘f-ln(f’-) (H)
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Time varying FieldsandMaxwell's Equatior

The general form of the four basic laws governing electromagnetic
fields (Maxwell’s equations) are shown below. All of the vector field, flux,
current and charge terms in Maxwell’s equations are, in general, functions
of both time and space [e.g., E(x,y,z,f)]. The form of these quantities is
referred to as the instantaneous form (we can describe the fields at any
point in time and space). The instantaneous form of Maxwell’s equations
may be used to analyze electromagnetic fields with any arbitrary time-

variation.

Maxwell’s Equations [instantaneous, differential form]
oB

VXE = 5, (Faraday ’s law)
t

VxH=J+ %1—:—— (Ampere’s law)

V-D=p, (Gauss’s law)

(Gauss’s law for

V-B=0 magnetic fields)

Maxwell’s Equations [instantaneous, integral form]

fE-dl= f B-ds (Faraday s law)
fH dl= f[(J+ ——) (Ampere’s law)
fD-ds=3§pvdv=Q (Gauss’s law)

(Gauss’s law for

§B-ds=0 magnetic fields)

20
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Note that the dynamic form of Maxwell’s equations contain time-
derivatives in Faraday’s law and Ampere’s law. We will focus on these
time-derivatives and discuss how these terms come about in dynamic
(electromagnetic) fields.

Complete Form of Faraday’s Law (Dynamic Fields)

The complete form of Faraday’s law, valid for both static and
dynamic fields, is defined in terms of a quantity known as the electromotive
force (emf) which has units of volts. In an electric circuit, the emf is the
force which sets the charge in motion (forcing function for the current,
voltage source). The emf in Faraday’s law an induced forcing function
generated by time-varying fields. In general, the integral of the electric
field around a closed circuit yields the total emf (V) in the integration
path.

Vemf=j£E-d1
L

The dynamic form of Faraday’s law can be defined in terms of
electromotive force as:

Faraday’s Law - a time-changing magnetic flux through a closed
circuit induces an emf in the circuit (closed circuit - induced current,

open circuit - induced voltage).

_ dV,,  The emf is an equal and opposite

emf g reaction to the flux change (Lenz’s law)
Yy, = fB-ds V =——d—-ffB'dS
m o dt
S S
R | . Faraday s law
Vems = jg E-dl - dt f f B-ds (integral form)
I S

Ts The unit normal associated with the differential

surface ds is related to the unit vector of the
Q differential length dI by the right hand rule.
dl
21
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Example (Faraday’s law induction, wire loop in a time changing B)

For the closed loop, the flux produced by the induced current opposes
the change in B.

A B (decreasing) A B (increasing)

2 1
— E —— E

For the open-circuited loop, the polarity of the induced emf'is defined
by the emf line integral.

Vemfr-}E-dl

A B (decreasing) A B (increasing)

Vemf

@
g
@
1

Induction Types

1.  Stationary circuit / time-varying B (transformer induction).
. Moving circuit / static B (motional induction).
3.  Moving circuit / time-varying B
(general case, transformer and motional induction).

22
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Example (transformer induction - AM loop antenna)

A 5-turn circular wire loop (N =5) of radius a = 0.4m lies centered in
the x-y plane with its axis along the z-axis. The loop is located in a time-
varying vector magnetic field defined by H = H cos(wt)z where H, =200
MA/m and f= 1 MHz. Determine the emf induced at the loop terminals.

d
me=—N;l—2£fB-ds A

(Ko€,) A
Note that we have modified : H

Faraday’s law to account for the
multiple turns in the loop (by
multiplying the single-turn
formula by N). Since the loop is o
stationary, ds 1is not time-

dependent so that the derivative x
with respect to time can be

brought inside the integral.

+

Vemg=—N f f —— - ds (transformer induction)

The time derivative i 1s written as a partial derivative since the magnetic flux
density is, in general, a function of both time and space. The polarity of the
induced emf is assigned when the direction of ds is chosen. If we choose
ds = Zds (then dl = ¢ dl for the line integral of E), the polarity of the
induced emf is that shown above. For this problem, both B [B=p H ]| and
ds are Z-directed so that the dot product in the transformer induction

integral is one.
—fo—ds— -Nu ff———ds

?H-H —-——(cos(1)t) H (-wsinwt)

ot

- ~wH sinot (functlon of tune,)

not position

23
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Since the partial derivative of H with respect to time is independent of
position, it can be brought outside the integral. The resulting integral of ds
over the surface S yields the area of the loop so that

ot f ds = - Nu——A

em,

where 4 is the area of the loop (A = Tta%).

V_.=-Np (-0H sinot)na’

emf
=wW,N na2H0 sin Wt (oscillating emf)
V| = @U,NTa’H,
=(27110%)(4=x1077)5m(0.4)*(200x 107°)
=3.97 mV
u

Note that the emf induced at the terminals :
of the antenna is a scaled, phase-shifted ]
version of the magnetic field. A typical ;
AM antenna achieves a larger induced emf
by employing a large number of wire turns
around a ferrite core.

vvvvvvv\;\.;vvvv».;\.ot

N turns

Al A vAVAvEvAvAvAvE - a- e -]

l
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Example (motional induction - moving conductor / static B)

YA sliding
| conductor
' T
. A E é
v B=B,(-%) u=ux
Vemf o ‘ ® vﬂ) l
o_ . -
- (uniform, static) |
I
zZ© - Y —>X

A particle of charge ¢ moving with velocity # in a uniform B
experiences a force given by

F=q(uxB) (Lorentz force equation)
E - F _ ux B ( emf elect-rlc ﬁe}d)
g motional induction

=[u,X]*[B,(-2)] =u,B,y

From Faraday’s law,

( motional induction)

V =¢E-dl= x B)-dl
emf f f (u>B) "flux cutting emf”

Choosing dI counterclockwise assigns the induced emf polarity as shown
above. On the moving conductor, the differential length is dl = dy y.

! I
Vemfzf(uoBoy)-(dyﬁ) =u0B0fdy :uoBol
0 0

Note that a uniform velocity yields a DC voltage. An oscillatory motion
(back and forth) could be used to produce a sinusoidal voltage.
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Example (General induction - moving conductor / time-varying B)

Using the same geometry as the last example, assume that the
magnetic flux density is B = B,coswt (-2).

f f 22 o ds + f (uxB)-dl (general induction)
Choose dl counterclockwise = dsout
dl = dy y(on moving conductor) ds =dxdy 2
oB

~ = -wB sinwt(-Z) = wB, sinwtZ
t

uxB=[ux]x[B coswt(-2)] =u,B coswty

x [

ff((oB sinwt?) - (dxdy?) + f(u B _coswty) - (dyy)

x|

~-wB sm(otffdxdy +u B coswtfdy

i

- (oxlBO sinwt + U, B coswt

If we let x = 0 at ¢ = 0 be our reference, then x = u,¢ and

%

omf = u IB_[coswt - wisinwt]
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Summary of Induction Formulas

_ .4 , Faraday’s law
Vens = f E-d- dt { f B-ds (integral form)
o= a_ _ (9B transformer
Vemr =V = f E,-dl= f f or ds (induction only)
L

e

( motional )

Vems = szfEm-dl=3§(u><B)-dl induction only
L L

_ _ oB _ general
Vg =V + Vi = ff“af dS+f("xB) dl ( case)
3 L

=f(Et+Em)-dl=fE-dl
L L
E=E,+E_

E, = transformer emf electric field
E_ = motional emf electric field

E = total emf electric field

Note that Faraday’s law can be written in a variety of forms. The general
formula (top formula) is always valid but we see that the line and surface
integrals may each implicitly contain separate transformer and motional
emf contributions.
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Displacement Current
(Maxwell’s contribution to Maxwell’s equations)

The concept of displacement current can be illustrated by considering
the currents in a simple parallel RC network (assume ideal circuit elements,

for simplicity).

o

ix(t) - conduction + \L ) \l, i(t)
current
v(?) R =< C
i(f) - displacement
current -
o
From circuit theory = ip(t) = -Y-%-)- i(t)=C d‘;:(tt)

In the resistor, the conduction current model is valid (J, = 6, E). The ideal
resistor electric field (E;) and current density (J;) are assumed to be
uniform throughout the volume of the resistor.

_ cross-sectional
ip(?) area = A,
(r) +

ip(?)

Jo(t) = = 0, Ep(1) = 6, A

4y Ip i

4 JR(t) ER(t) '

: Y t
ip(2) = 1; By(t) = _v_%) ; ) Positive
R V() ® 1 charge
/
R=_2~ Op
04, v

— iR (?) {
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The conduction current model does not characterize the capacitor
current. The ideal capacitor is characterized by large, closely-spaced plates
separated by a perfect insulator (0. = 0) so that no charge actually passes
throught the dielectric [J-(¢) = 6. E.(f)]. The capacitor current measured
in the connecting wires of the capacitor is caused by the charging and
discharging the capacitor plates. Let O(¢) be the total capacitor charge on

the positive plate.
. ) dQ(f) plate area=AC
el == | ON
ic(?)
Q1) = Cv(2)
d
(H=C ‘;ft’ )

v(t)=E.()d C-=

€ed. dE (1) dD_.(t)
lc( ) ‘“';l,'_”—'[Ec(t)d] ;l‘ :AC ;;‘
J(0) = C(f) dD (1) ( displacement)
dt current density

C

Based on these results, the static version of Ampere’s law must be modified
for dynamic fields to include conduction current AND displacement
current. Note that displacement current does not exist under static
conditions. The general form for current density in the dynamic field
problem is

J o =J+ 9D where J=0FE +p u

total
- Ej A v

" displacement  conduction . convection
- current current current
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Complete Form of Ampere’s Law (Dynamic Fields)

Given the definition of displacement current, the complete form of
Ampere’s law for dynamic fields can be written.

H-dl=I_=[[J, .4 J+ 9D
frrdt=t e [ [f[ 1) o
greasf[(20 9] s R

The corresponding differential form of Ampere’s law is found using
Stoke’s theorem.

fH-dlzgf(Vx - ds - ff(1+_]

Since the two surface integrals above are valid for any surface S, we may
equate the integrands.

oD Ampere’s law
VxH=J+ o (differential form)
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Example (Ampere’s law, non-ideal capacitor)

The previously considered parallel RC network represents the
equivalent circuit of a parallel plate capacitor with an imperfect insulating
material between the capacitor plates (finite conductivity).

(1) Y
+ ‘

Capacitor with imperfect

v(7) (o, €) l E(),J(?) d insulating material
| (assume E, J are uniform)
i(1) }
o i(t) —> R
N \l'iR(t) \L i) C -~ models charge storage
(displacement current)
V() R —1 C
) R - models leakage current
o (conduction current)

Equivalent circuit
Let the applied voltage be a sinusoid. = V() =V, sinwt

The resulting electric field in the capacitor is given by

V .
v(t) —2sinwt = E sinwt  E = — peak capacitor

d electric field
The conductlon current in the non-ideal capacitor is given by the product
of the insulator conductivity and the capacitor electric field.

E(t) =

V
J(t)=0E(t)=0 —-di sinwt = 0 E_sinwt =J sinw?

oV, peak capacitor conduction
current density
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The displacement current in the non-ideal capacitor is given by the partial

derivative of the capacitor flux density.

0D(1t) e oE (1)
ot ot
DO =WE
Note that:

ol V, .
=€ —| — sInwt
ot
VO
———=weE0
d

= WE -—j— coswt = D _coswt

peak capacitor displacement
current density

1. The peak conduction current density is independent of
frequency.
2. The peak displacement current density is directly proportional
to frequency.
3. The displacement current density leads the conduction current
density by 90°.

Conduction currents and displacement currents in problems involving time-
harmonic electromagnetic fields exhibit the same behavior seen in the non-

ideal parallel plate capacitor. Namely,

3D ()
ot

|J| =cE

=wek

Thus, the relative magnitudes of the two terms o and we dictate if one type
of current dominates the other. Since typical material permittivities are in
the 1-100 pF/m range, the displacement current density is typically
negligible at low frequencies in comparison to the conduction current

density (especially in good conductors).

At high frequencies, the

displacement current density becomes more significant and will typically

dominate the conduction current density in good insulators.

The

classification of a material as a “good conductor” or a “good insulator” can
be made based on the relative size of 0 and we.

O>We

o< we

good conductor

good insulator
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displacement current
is negligible

conduction current
is negligible
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