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Electrostatic Fields

Electrostatic fieldsarestatic (time-invariant) electric fields produced
by static (stationary) charge distributions. The mathematical definition of
the electrostatic field is derived from Coulomb’s law which defines the
vector force between two point charges.
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Note that the unit vector direction is defined according to which
charge is exerting the force and which charge is experiencing the force.
Thisconvention assuresthat the resulting vector forcealways pointsin the
appropriate direction (opposite charges attract, like charges repel).

le aR21 aR12 F12 FZI aR21 aR12 Flz
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The point charge is a mathematical approximation to a very small
volume charge. The definition of a point charge assumes afinite charge
located at a point (zero volume). The point charge model is applicable to
small charged particles or when two charged bodies are separated by such
a large distance that these bodies appear as point charges to each other.

Given multiple point charges in a region, the principle of
superposition is applied to determine the overall vector force on a
particular charge. The total vector force acting on the charge equals the
vector sum of the individual forces.
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Force Due to Multiple Point Charges

Given apoint charge Q inthevicinity of aset of N point charges (Q,,
Q,,..., Qy), the total vector force on Q is the vector sum of the individual
forces due to the N point charges.

_ total vector forceon Q

dueto Q,, Q,...., Q

_ QQl(r_rl) N QQz(r_rz) N N QQN(r_rN)
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Electric Field

According to Coulomb’s law, the vector force between two point
charges is directly proportional to the product of the two charges.
Alternatively, we may view each point charge as producing a force field
around it (electric field) which is proportional to the point charge
magnitude. When a positive test charge Q is placed at the point P (the
field point) in the force field of a point charge Q' located at the point P’,
theforce per unit charge experienced by thetest charge Q isdefined asthe
electric field at the point P. Given our convention of using a positive test
charge, the direction of the vector electric field isthe direction of the
for ceon positivecharge. A convention hasbeen chosen wherethesource
coordinates (location of the source charge) are defined by primed
coordinates while the field coordinates (location of the field point) are
defined by unprimed coordinates.

Q' - point charge producing
the electric field

L]

Q' at P’

Q - positive test charge used Y —— | T O at P
to measure the dectric field Y

r' - locates the source point r
(location of source charge Q')

r - locatesthe field point
(location of test charge Q) X

From Coulomb’ slaw, the force on the test charge Q at r dueto the charge
Qatr'is

F(r)-29°0=0)

e |r-1)

Thevector dectric field intensity E at r (force per unit charge) isfound by
dividing the Coulomb force equation by the test charge Q.
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_F(r) _ Q'(r-7)
E = = N/C
(r) 0 47‘E€0|r—r/|3 ( )

Notethat theelectricfield produced by Q' isindependent of the magnitude
of thetest charge Q. Thedectricfield units[Newtons per Coulomb (N/C)]
arenormally expressed asVoltsper meter (V/m) accordingtothefollowing
equivalent relationship:

N _J/m_J/C_V

C C m m

For the special caseof apoint chargeat theorigin (r'=0), theelectricfield
reduces to the following spherical coordinate expression:

Ern=—27 - 2 4 (vim)
e, |r|> 4mer?

Note that the eectric field points radially outward given a positive point

charge at the origin and radially inward given a negative point charge at

the origin. In either case, the eectric field of the a point charge at the

origin is spherically symmetric and easily defined using spherical

coordinates. The magnitude of the point charge electric field variesasr 2.
E E

NS NS
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Postive charge (O>0) Negative charge (0<0)
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The vector force on a test charge Q at r due to a system of point
charges (Q,", Q,',..., Q\/) a (r{, r,,..., Iy) 1S, by superposition,

N /
L (r-rp)
Fn=-2 Yo — %
me, T rap
Theresulting electric field is

F(r)_ 1 NQ, (r-r)

E(r)z S A
0 4TE, =1 k |""'/k|3

Example (Electric field due to point charges)

Determinethevector eectricfield at (1,-3,7) mdueto point charges
Q'=5nCat (2,04 mandQ,’=-2nCat (-3,0,5 m.

r:ax—3ay+7az
/
r,=2a_+4a,

/
r,=-3a_+5a,

/ /
E(ry- 1| U g, R
/ /
e r-nP r-nP
_ -a_-3a_ +3a
S O i T
4TC€0 _ [12 +32 +32]3/2
4a_ - 2
(210 (730, 7 202)
[42 n 32 n 22]3/2
_ S . _ _
=8.988 (19)3/2( a,-3a,+3a,) (29)3/2(4ax 3a,+2a,)

E(r)=(-1.004a_-1284a,+1399a,) (V/m)
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Charge Distributions

Charges encountered in many electromagnetic applications (e.g.,
charged plates, wires, spheres, etc.) can be modeled as line, surface or
volume charges. The electric field equation for a point charge can be
extended to these charge distributions by viewing these distributions as
simply a grouping of point charges.

Charge Charge
Distribution Density Units Total Charge
point _
charge 0 ¢ Qiotar =€ * 0
. dl/
line _ / P

charge pL C/ m Qtotal N f pL dl /LX\/
L

surface 2 _ /

charge pS C/m Qtotal _ffpS dS
S

volume 3 _ /

charge pV C/m Qtotal_fffdev

14

In general, the various charge densities vary with position over the line,
surface or volume and require an integration to determine the total charge
associated with the charge distribution. Uniform charge densities do not
vary with position and thetotal chargeis easily determined as the product
of the charge density and the total length, area or volume.
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Uniform Charge Distributions

Uniform line charge (p, = constant)

Qtotal
Qtotal :{pLdl/ = pL[dl/ = pLLo = pL - Lo
(L, = total line length)
Uniform surface charge (ps= constant)
Qtotal
Qtotazzéfpsdslzps{de/:pSAo = Ps= A

(A, = total surface area)

Uniform volume charge (p, = constant)

O [forouf[[0'-0,7, = Lo
4 4

o

(V, = total volume)

Electric Fields Dueto Charge Distributions

Each differential element of charge on aline charge (dl'), a surface
charge (ds’) or avolumecharge (dv’) can beviewed asapoint charge. By
superposition, the total electric field produced by the overall charge
distribution is the vector summation (integration) of the individual
contributions due to each differential element. Using the equation for the
electricfield of apoint charge, we can formulate an expression for dE (the
incremental vector e ectricfield produced by thegiven differential element
of charge). We then integrate dE over the appropriate line, surface or
volume over which the chargeisdistributed to determinethetotal eectric

field E at thefield point P.
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Point Charge
E("):—Q ag
4me R*
R=|r-7| ap=-"7T
-7

Line Charge (p, dl ‘= Q)

p, dl’
dE(r)=—2"_a

4me R? K

1 Pz /
E(r) = adl
(r) 4%0[1{2 .

Surface Charge (psds’= Q)

pgds’
dE(r)=—2"_a
4me R?

Volume Charge (p,dv’+= Q)

p,dv’
dE(r) = " _a
4me R?

4ne ff =aR

R

E(r) =

0
\ r7 r/
P
r/
r
y
X
Pr
dl’ ,
r-r
P
r/
r
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r-r
P
r/
r
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r-r
P
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Example (E dueto aline charge)

EvaluateE at P = (X,Y,2) dueto auniformlinechargelying along the
z-axis between (0,0, z,) and (0,0, z;) with z; > z,.

i P=(x,,7)
Ery =L [Pra ar K
(r)_411;€ fRZ Pr Pr r-r i
! e :
_ Qtotal _ Qtotal , r r :
L - z 4 I
L Zp—Z, 'z
‘ 2 l
y :
x Sl .
dl' =dz’ Y |
r=xa +ya,tza,=pa,+za, "
r=za,
R=r—r’=pap+(z—z/)az
R=|R|=yp*+(z-2')
R Pa,+(z-z))a,
aR: =
Rl e(z-2Y
5 pa+(z-z")a
E(ry=_ fpp( a,
4ﬂ;€02 [p2+(Z_Z/)2]3/2
A
Zp Zp
_ P Paf dz’ +af (z-z') g
4neo P [p2+(z—z/)2]3/2 z [p2+(z—z/)2]3/2

Zy Zy
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Theintegralsin theelectric field expression may be evaluated analytically
using the following variable transformation:

Let a=z-z' do=-dz’

Z:ZA - (x:Z_ZA

z'=z, - Q=Z-Zg
E(r)- Pr | _ Z_fZB do. ZfZB ado
4Te P (p2+ o2 )3/2 (p2+ a2)3/2
Z—ZA Z—ZA
f dx _ x f xax  __ 1
( V4 ZB V4 ZB
E(r)= b {-pa, - ta, : >
4Te, 0%/ a2+ p? /a2+p2
Z—ZA Z—ZA
) Py z-z, ) Z-Zg 4
P
ML | R ERE N R R CRE
P P

+

For the special case of aline charge centered at the coordinate origin
(zy= -4, zz = a) with thefield point P lying in the x-y plane [P = (x,y,0)],
the electric field expression reduces to

(P2 (22 PP+ (z-z,)

1"
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L)

dl” k.

il . V»»E

Vam vad
dl’} P
-a
P a -a
E(r)=—1* - a,
4me, p \/p2+a2 \/p2+a2
N P _ P a,
Vpr+a® |pP+a’
~ P, a (E-field in the x-y plane due to a
E(r)-= a, uniform line charge of length 2a
2me pypita’ centered at the origin)

Todeterminetheéectric field of an infinitelength linecharge, wetakethe
limit of the previous result as a approaches «.

p ]
E(r) - _ L ap lim _a
2nep "ave o2+ a?
P | 1
=L a, lim
2ne,p "aw (p/a)+1
p i . .
E(r)= L a (E-field due to a uniform line
) P charge of infinite length lying
TE, P o
along the z-axis.)
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Note that the eectric field of theinfinite-length uniform line charge
is cylindrically symmetric (line source). That is, the eectric fied is
independent of ¢ due to the symmetry of the source. The dectric field of
the infinite-length uniform line charge is al so independent of z due to the
infinitelength of the uniform source. In comparison totheéelectric field of
apoint charge (which variesasr ?), theeectric field of theinfinite-length
uniform line chargevariesasp *. If p, ispositive, the electric field points
outward radially whileanegativep, producesanelectricfield which points
inward radially.

y

L N\
Z NN

Infinite-length uniform Infinite-length uniform
line charge (p, >0) line charge (p, <0)

13
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Example (E dueto asurface charge)

Evaluate E at a point on the z-axis P = (0,0, h) due to a uniformly
charged disk of radius a lying in the x-y plane and centered at the
coordinate origin.

E(r) = I ffp—‘iaR ds’ z
4TE€O < R P:(0,0,h)
_ Qtotal _ Qtotal
>4 na? ,
r r-r
ds' =p’dp’d}’
r—ha, ﬂ
! Y
r :p’ap X r ! ds’
R:r—r/zhaz—p’ap
R=|R|=yp/*+h?
R _ ~Pa,+ha,
a,= =
|R| /p/2+h2
411;e f f )3/2p P

¢/0/0

The unit vector a,, which is afunction of the integration variable ¢, can
be transformed into rectangular coordinate unit vectors to simplify the
integration.

_ / SV
a, =cosdp’a_+sind a,
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2n  a
E(r)= Ps 1a f f ~p"cos¢ dp’do’
4Tte x ( /2+h2)3/2
°| ¢=0p=-0 P

+a f f p/ZSind)/ dp/dd)/

N 0 p/2+h2)3/2
+a h f f /2 3/2 p/dd)/
q)/ Op 0 p +h )

The first two integrals in the electric field expression are zero given the
sine and cosine integrals with respect to ¢’ over one period.

27 27
f sin ¢’ dd’ = f cosd’dd’ =
0 0

The dectric field expression reduces to

27

p'dp! _ Pgh
fdd)f (p/2+h2 )2 4neoaz[¢/] 0

-1

0

PS hii ~ 1 a (E-field on the z-axis due to a uniformly
- 7 ) z charged disk of radius a in the x-y plane
a+h centered at the origin, h = height above disk)

Theelectric field produced by an infinite charged sheet can be determined
by taking the limit of the charged disk E as the disk radius approaches .

E(infinite sheet) = lim | E (disk, radius =a)

aq-—o

psh . P
E(r)= -5 a, lim 1 L S a, (E-field dueto auniformly
2€, © a- [2+n% | 26, charged infinite sheet)

Note that the éectric field of the uniformly charged infinite sheet is
uniform (independent of the height h of the field point above the sheet).

15
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Electric Scalar Potential

Given that the electric field defines the force per unit charge acting
on a positive test charge, any attempt to move the test charge against the
electric field requires that work be performed. The potential difference
between two points in an eectric field is defined as the work per unit
charge performed when moving apositivetest chargefrom onepoint tothe
other.

From Coulomb’s law, the vector force on a positive point charge in an
electric field is given by

F=QE

The amount of work performed in moving this point charge in the electric
field is product of the force and the distance moved. When the positive
point chargeismoved against theforce (against theelectricfield), thework
doneis positive. When the point charge is moved in the direction of the
force, the work done is negative. If the point charge is moved in a
direction perpendicular to the force, the amount of work doneiszero. For
adifferential element of length (dl), the small amount of work done (dW)
isdefined as

dW = -F-dl = -QE-dl

16
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The minus sign in the previous equation is necessary to obtain the proper
sign on the work done (positive when moving the test charge against the
electric field). When the point charge is moved along apath from point A
to B, the total amount of work performed (W) isfound by integrating dW
along the path.

B B

B
W= \|dw=~-|F-dl=-Q| E-dl (J)
[ar-[ra-of
The potential difference between A and B is then
W J
Vyp=—=-[E-dl ~ =V
0 f (C )

The potential difference equation may be written as

B B
V= —fE-dl:de: V.-V,
A A

whereV, and V; arethe absol ute potential sat points A and B, respectively.
The absolute potential at a point is defined as the potential difference
between the point and a reference point an infinite distance away. The
definition of the potential differencein terms of the absolute potentials at
the starting and ending points of the path shows that the potential
difference between any two points is independent of the path taken
between the points.

For aclosed path (point A = point B), thelineintegral of the electric
field yields the potential difference between a point and itself yielding a
value of zero.

fE'dlzo

Vector fields which have zero-valued closed path line integrals are
designated as conservativefields. All eectrostatic fields are conservative
fields.

17
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Example (Potential difference)

Determinetheabsolute potential in the e ectric field of apoint charge

Q located at the coordinate origin.

The dectric field of a point
charge at theoriginis

E. O

4te r
[0

2ar

The potential difference between two
points A and B in the eectric field of
the point chargeis

B B
Vg = —fE-dlzdez V.-V,
A A

If we choose an inward radial path from r=r, to r =rg, the vector

differential lengthis

dl=dla,=(-dr)(-a,)=dra,

which yields
0 _
Vip=- a |-(dra,)= -
4B !(4neor )
A
= — Q _i - Q ;—;
e, | r dme, |ry, 1,

The absolute potential at point B is found by taking the limit as r,

approaches infinity.
1 1

Fp Ty

lim

— 00

T _ 9
Vg = lim Vg = Ire

Ty Ty

18
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Potentials of Charge Distributions

The previous formula can be generalized as the absolute potential of
apoint charge at the origin (let rg =r).

V= Q (Absolute potential for a
41te 7 point charge at the origin)
o

Note that the potential distribution of the point charge exhibits spherical
symmetry just like the eectric field. The potential of the point charge
varies as r ! in comparison to the electric field of a point charge which
varies as r 2. Surfaces on which the potential is constant are designated
asequipotential surfaces. Equipotential surfacesarealwaysperpendicular
to the dectric field (since no work is performed to move a charge
perpendicular to the electric field). For the point charge, the equipotential
surfaces are concentric spherical surfaces about the point charge.
The absolute potential of a point charge at an arbitrary location is

V= Q (Absolute potentia for a point
charge at an arbitrary location)

e |r-r|

-
)

Theprincipleof superposition can beapplied to the determinethepotential

due to a set of point charges which yields

N
1 Oy (Absolute potential of a

V= .
/ set of point charges
4me, k-1 I=A P ges)

Thepotentialsdueto line, surfaceand volumedistributionsof charge
arefound by integrating theincremental potential contribution dueto each
differential element of charge in the distribution.

19
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V(r) = Q0
(r) 4me R
R=|r-7|

Line Charge (p, dl ‘= Q)

dl’
dv(r) = P
4neoR
pry = [P
4Te, 7 R

Surface Charge (psds’= Q)

/

pds
4neoR

V(r) = 4;60 {f% s/

dV(r) =

Volume Charge (p,dv’+= Q)

/

p,dv
4me, R

1 p
V(r) = 4n€0f£f% »

dv(r) =

20

z
0
\ rfr,
I
r/
r
y
X
z
Pr
dl’ ,
r-r
I
r/
r
Yy
X
z
dS, pS
r-r
P
r/
r
J)
X
z
dv/ pV
r-r
P
r/

J)
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Example (Potential dueto aline charge)

Determinethe potential inthe x-y plane dueto auniform line charge
of length 2a lying along the z-axis and centered at the coordinate origin

- L Py
z=a 4n60L R
dl'§
A\ dr’ =dz’
\\Qg — ’::pr
______ -~ r=za,
P
X & R=r—/=pap—z%z
z=—a
R=|R|=\z'*+p?

a

/ ? /
- 4pL f dz - (2) 4PL f dz
mE, < Z/2+p2 e Z/2+p2

Even integrand
Symmetric limits

x?+a?
Pz 2 S
V= In[z/+yz*+p?] = L {m{a+ch+pq—lnp}
2TeE, 0 2me,
2 2

_ Pz Inl¢ ve+a (Absolute potential in the x-y plane due to a

2TeE p uniform line charge of length 2a lying along
[
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the z-axis centered at the coordinate origin)

Example (Potential due to a square loop)

Determine the potential at the
center of a square loop of side length |
which is uniformly charged.

< / >

12
Theuniformly charged square loop

can beviewed as four line charges. The p, .
total potential at the center of theloop is P
the scalar sum of the contributions from
the four sides (identical scalar
contributions). Thus, the potential at P
due to one side of theloop is

2. 2
side pL In a+\/ﬁ a:i P:i
2neo p ) )
2 2
Vtotal =4 Vside - (4) pL In 1/2 +\/(l/2) +(l/2)
2neo 1/2

2
- P14y
TE

o

22



Dr. Ahmed Abdolkhalig

The University of Tobruk
Department of Electrical Engineering
www.ahmed.ucoz.org

Electric Field asthe Gradient of the Potential

The potential difference between two pointsin an eectric field can
be written as the line integral of the electric field such that

B B
Vg = —fE-dlzdez V.-V,
A A

From the equation above, the
incremental change in potential along
theintegral pathis

dV =-E-dl= -E-a,dl = - Ecos0dI

where 0 is the angle between the
direction of the integral path and the
electric field. The derivative of the
potential with respect to position along
the path may be written as

d—ll/: - EcosO

Note that the potential derivative is a maximum when 6= (when the
direction of theeectric field isoppositeto thedirection of the path). Thus,

=F when O =1 (cosO=-1)

ax

av
di|

This equation shows that the

magnitude of the electric field is a

equal to the maximum space rate of

change in the potentia. The vy

direction of the electric field is the E
direction of the maximum decrease

in the potential (the electric field

adways points from a region of 1V

higher potential to aregion of lower

potential). oV
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The electric field can be written in terms of the potential as

dv dVv
E a’l( a,) I a,=-VV

where the operator “V” (ddl) is the gradient operator. The gradient
operator is a differential operator which operates on a scalar function to
yield (1) the maximum increase per unit distance and (2) the direction of
the maximum increase. Since the eectric field always points in the
direction of decreasing potential, the eectric field is the negative of the
gradient of V.

The derivativewith respect to | in the gradient operator above can be
generalized to aparticular coordinate system by including the variationin
the potential with respect to the three coordinate variables. In rectangular
coordinates,

dv v 9V oV
a —4a

vr=3 g -V 1V, IV,
dl Ox dy 7 oz
= i a + i a + i a (Gradient operator in
ox * 9y ¥ 9z ° rectangular coordinates)

The gradient operator isdefined differently in rectangular, cylindrical and
spherical coordinates. The electric field expression asthe gradient of the
potential in these coordinate systems are

E=-VV=- 8=Vax+ 8=Va +8=Va (rectangular)
Ox dy 7 oz
arv 1 oV arv g
= - — ——a, +—a cylindrical
P e )

1% 19V 1 av
—a + —a

a, + ———— spherical
or 7 r 90 ° rsin® op ° (s )
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Example (E asthegradient of V)

Given V(7,0,¢) = 1—(2)sinGCOS¢ (a) find E(r,0,¢) and (b.) E at
(2,7/2,0). r

oV 1 GV 1 GV
a a +
or ' rsin® 84)

-110sinOcos¢p — ( )a +—cos<1)a—(sm6)ae
9

10
+ ? ad)(cosd)) a,

20 . 10 10 .

_Fsmecosqm’ Fcosﬂcos¢ae+FSIH¢a¢
=E.a, v Eqag + Eya,

b.

(b) E(2,mt/2,0) = ?Oa +Oa9+0a —2—8011 (V/m)

Summary of Electric Field / Potential Relationships

V=- f E-dl Integrate E to find V

E=-VV Differentiate V' to find E
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Electric Flux Density
The electric flux density D in free space is defined as the product of
the free space permittivity (€,) and the electric field (E):
D=¢E

Given that the electric field isinversely proportional to the permittivity of
the medium, the éectric flux density is independent of the medium

properties.
pOil’lt E = Q a D = Q a
charge dme r? 4nr?
line E- P 4 D - P; 4
charge 2ne,p P 2np P

The units on eectric flux density are
F_V_ C
X =

m m m?
so that the units on electric flux density are equivalent to surface charge
density.
Thetotal electric flux (§r) passing through a surface Sis defined as
the integral of the normal component of D through the surface.

q;:UD-ds:ffD-ands:ffDnds

S S
where a, isthe unit normal to the surface Sand D,, is the component of D
normal to S. Thedirection chosen for theunit normal (oneof two possible)
defines the direction of the total flux.
For a closed surface, the total electric flux is

a - outward (total outward flux)
a, - inward (total inward flux)

v =¢Dd
f S
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Gauss'sLaw

Gauss' slaw isoneof the set of four Maxwell’ sequationsthat govern
the behavior of electromagnetic fields.

Gauss sLaw - Thetotal outward electric flux g through any closed
surface is equal to the total charge enclosed by the surface.

Gauss's law iswritten in equation form as
y = f D-ds=Q, . . (Gauss s law)
S
where ds = a,ds and a, is the outward pointing unit normal to S
Example (Gauss's law, point charge at origin)

Given apoint charge at the origin, show that Gauss' slaw isvalid on
a spherical surface (S) of radiusr..

Gauss' slaw applied to thespherical surface Ssurrounding thepoint charge
Q at the origin should yield

lIJ = fDdS = Qenclosea’ = Q
S

The eectric flux produced by Qis
p. ©

4y

a

7
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On the spherical surface Sof radiusr,, we have

D(r=r)) = 0 a, ds=rozsin0d6dd> a,
411:7’02
D-ds = Y ar] . (rozsinﬁdedd) ar): Q sin 0 dO do
Anr. 4
Q m o 2m P 27
wzf =4—6f0 ¢f051n6d8d¢ [ cos 0] O[d)] :

= 42(2)(211) =Q (charge enclosed)
T

Note the outwar d pointing normal requirement in Gauss'slaw isadirect
result of our eectric field (flux) convention.

interior positive charges -~ outward electric flux
interior negative charges - inward electric flux

By using an outward pointing normal, we obtain the correct sign on the

enclosed charge.
Gauss slaw can also beused to determinetheél ectric fields produced

by simplechargedistributionsthat exhibit special symmetry. Examples of
such chargedistributionsincludeuniformly charged spherical surfacesand

volumes.
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Example (Using Gauss's law to determineE)

Use Gauss's law to determine the vector eectric field inside and
outside a uniformly charged spherical volume of radius a.

)k r<a
Pr=10 r>a
k = constant

S - spherical surface of
radiusr = a

S, - spherical surface of
radiusr > a

S - spherical surface of
radiusr <a

Gauss' s law can be applied on S to determinethe electric field inside the
charged sphere [E(r <a)].

fDdS - Qenclosed - f pV dv
S V.
(V_=volume enclosed by S )
ds =dsa,

D-ds=¢D-a_d
f si a,ds

= fD A8 = Q ctosed
S

By symmetry,on S (and S,), D, isuniform and has only an a, component.
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fDr ds = Drfds - Dr(4TC7’2) = Qenclosed
S S

= Ifp,,dv = pVIfdv = k(%nﬂ)

k(inr3)
D, = 3 _ kr (r<a)
4y’ 3
or
D:ﬂar ZLZL . (}"<a)
3 € 3e

Gauss' slaw can beapplied on S, to determinethe eectric field outside the
charged sphere [E(r >a)].

fDr ds = Drfds - Dr(4TC7’2) = Qenclosed
S, S,

_fo.dv-p,ddv-kl? 3)
ip,,v oof i (3na

(¥ =volume enclosed by )

k(inag’) 3
D, = 3 - ra (r>a)
4mr? 372
or 3 3
D—kéa E = ka a (r>a)
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E|

ka
3¢

Electric Field for the uniformly charged
spherical volume of radius a

ka3

2
3eor

31

7



Dr. Ahmed Abdolkhalig
The University of Tobruk
Department of Electrical Engineering

meRTe Divergence Operator / Gauss's Law (Differential Form)

The differential form of Gauss's law is determined by applying the
integral form of Gauss slaw to adifferential volume (Av). Thedifferential
form of Gauss'slaw is defined in terms of the divergence operator. The
divergence operator isobtained by taking thelimit as Av shrinksto zero (to
the point P) of the flux out of Av divided by Av.

z
Av=AxAyA:z I A=
- -
P_(xo’yo’zo) Ay Ax
y
X
fD'ds (net flux out of Av)
Av
f D-ds
Av
DivD =V-D = lim = lim Qonctosed | _ 0, (P)
T Av-0 Av Av-0
Gradient operator
f D-ds=Q, . . Gauss’s law (integral form)
S

V-D=p, Gauss’s law (differential form)
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Thedivergenceoperator inrectangular coordinatescan bedetermined
by performing the required integrations. The electric flux density within
the differential volume is defined by

D =Dxax+Dyay+DZaZ
while the electric flux density evaluated at the point P is defined as
D(P)= D,a +D, a, +D a,

The total flux out of the differential volume Av is

fD-ds=ffD-ds+ffD-ds+ffD-ds+ffD-ds+ ffD-ds+f D-ds

Av front back left right top bottom
Jace Jace face Jace face face

The electric flux density components can be written in terms of a Taylor
series about the point P.

82Dx (x —xo)2

+ ...
axz 21
3°D, (y-»,)

+ ...

oD
D (x)=D_+—=(x-x)+
0x

oD,
D(y)=D,+——=y-y,)+

dy dy? 2!
oD, 82DZ (Z—ZO)2
D (z)=D_+ (z-z,)+ +...
‘ “ 0z dz?2 2!

For points close to P (such as the faces on the differential volume), the
higher order termsin the Taylor series expansions become negligible such
that

oD
“(x-x,)
X

D (x)=D_+
x() xoa

oD,
D,(y)=D,+ & y-y,)

oD
0z

D (z)~D_+—=(z-z,)
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The flux densities on the six faces of the differential volume are

front face

oD
D (x, +Ax/2)~D_ z Ax
ox 2
right face
oD_ A
D.(y +Ay/2)~ D +—22)
(v, +*Ay/2) =D, 5 2
top face
oD
D (z,+Az/2)~D_, : Az
oz 2

back face aD
D (x,-Ax/2)~D_ - z Ax
ox 2
left face
D (y-Ay/2y~D -2 Ay
00 A= D,
bottom face
oD
D (z,-Az/2)=D_-—= Az
oz 2

The integrations over the six sides of the differential volumeyield

ffD ds+ffD ds = AfZAfy
front back
face face
Az Ay
"
00
ffDds ffDds AfZAfx D +
right left
face face
Az Ax
"
00
ffD ds + ffD ds = 7}76[
top bottom
face face
Ay Ax

Yo

D Ax a_dydza_

a_dydz(-a)

a, dxdza

a, “dxdz (- a)
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oD_ oD, D, oD_ oD, oD,
fD-ds: +—2+ xAyAz = +—2+ Av
: ox Jdy oz

ox Jdy oz
The divergence operator in rectangular coordinatesis then

D-ds
: , Av oD_ oD, 0D,
DivD =V-D = lim = +—Y+
Av-0 Av ox Jdy oz

Note that the divergence operator can be expressed as the dot product of
the gradient operator with the vector

0 0 0
V-D=| —a +—a +—a |- (Da +D a +D a
(axxayyazz)(xx Yoy zz)
oD oD oD
— X Yy . z
ox Jdy Oz

The same process can be applied to the differential volume element
in cylindrical and spherical coordinates. The results are shown below.

Cylindrical
oD, 0D
szli(pp)+l ¢, "z
pop P pod oz
Spherical
oD
V-D:ii( D, 1 i(Desine)+ 1 ®
r2or rsin0 00 rsin® oo
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Example (Divergence)
Given D =psinda, + pzza‘b +zcospa_ , determine p,.

1 a 10D, oD
ad) 0z

z

p,=V-D =

—;—(p smd))+—£(9 )+%(ZCOS¢)

- L2psing)+ L(0)+(cosd)
P P

=2sind +cos (C/m?)
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Divergence Theorem

The divergence theorem (Gauss' s theorem) is a vector theorem that
allows avolume integral of the divergence of a vector to be transformed
into asurfaceintegral of thenormal component of thevector, or viceverse.
Given a volume V enclosed by a surface S and a vector F defined
throughout V, the divergence theorem states

# F-ds = 7%[ (V-F)dv (Divergence theorem)
S v

Gauss' slaw can beused toillustratethevalidity of thedivergencetheorem.

# D-ds=Q, , = c‘}%(; p, dv =<}%€ (V-D)dv  (Gauss’s law)
S V V

Example (Divergence theorem and Gauss's law)
Using the divergence theorem, calculate the total charge within the

volumeV defined by 2<r <3, 0<0 <m/2, 0< $ <27 given an dectric flux
density defined by D =r2sind a +rsin® a; (C/m?*) by evaluating

(a') Qenclosea’ = # D -ds
S

(b) Qenclosed :ﬁ\ (VD)dV

vV
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. Z S, - outer hemispherical surface
’ (r=3,0<0<7/2, 0<p<2m)

S, - inner hemispherical surface
(r=2,0<8<m/2,0<p<2m)

S, - flat ring
(2<r <3,0=m/2, 0< P < 2m)

spherical coordinate differential volume
dv = (dr)(rd0)(rsin0do)

@) Quretosea = fp D -ds = [[ Dy-ds, + [ Dyds, + [[ D, -ds,
S

Sl S2 S3
On S, = D=D(r=3)=9sinda, +3sinOa, ds,=9s5in0d0dP(a )
On S, = D,=D(r=2)=4sin¢a +2sinba, ds,=4sin0d0Oddp(-a )
On S, = D,=D(0=n/2)=r’sinba +ra, ds,=rdrdd(ay)

0 0
21 /2 21 /2

Qenctosea = 81 $sinBd0ddp - 16 ¢ sin 0 dO do
tosed ff sin [{ sin

2n 3
+ffr2drd¢
0 2
3
3 2n
Qenclosed: {%] [d)] N ﬂ(z )_ Tn (C)

2
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(b.)

Qenclosed = ﬁ‘ (VD ) dv
V

9

V'D:p :iz 1
7 or

7sin0O
L9 (,sin20)

7sin® 00

1

7sin0O

V (rzDr

8%(1)9 sin0)

-1

7’2

1
2

i(;f“sind)) +
or

(4r3sind) + (2rsinBcos0)

r
=4rsind +2cos® (C/m?)
2w n/2 3
Oumetosea= [ [ [ (4rsind +2cos0) r?sinOdrdd do
002
2w n/2 3 0
=4 (r3sin6/si£¢)drd9d¢
[
2w n/2 3

+2[{[(rzsinecosﬁ)drd6d¢

fsinecose do = % sin?0

3

7"3 1 )
=2(— 1| | =sin“0
Qenclosed 3 ] {2
] 2 0

2[19)(1) 25y - 38
=2 3)(2)(211) 3)n(C)

m/2

]

0
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Electric Scalar Potential

Given that the electric field defines the force per unit charge acting
on a positive test charge, any attempt to move the test charge against the
electric field requires that work be performed. The potential difference
between two points in an eectric field is defined as the work per unit
charge performed when moving apositivetest chargefrom onepoint tothe
other.

From Coulomb’s law, the vector force on a positive point charge in an
electric field is given by

F=QE

The amount of work performed in moving this point charge in the electric
field is product of the force and the distance moved. When the positive
point chargeismoved against theforce (against theelectricfield), thework
doneis positive. When the point charge is moved in the direction of the
force, the work done is negative. If the point charge is moved in a
direction perpendicular to the force, the amount of work doneiszero. For
adifferential element of length (dl), the small amount of work done (dW)
isdefined as

dW = -F-dl = -QE-dl
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The minus sign in the previous equation is necessary to obtain the proper
sign on the work done (positive when moving the test charge against the
electric field). When the point charge is moved along apath from point A
to B, the total amount of work performed (W) isfound by integrating dW
along the path.

B B

B
W= \|dw=~-|F-dl=-Q| E-dl (J)
[ar-[ra-of
The potential difference between A and B is then
W J
Vyp=—=-[E-dl ~ =V
0 f (C )

The potential difference equation may be written as

B B
V= —fE-dl:de: V.-V,
A A

whereV, and V; arethe absol ute potential sat points A and B, respectively.
The absolute potential at a point is defined as the potential difference
between the point and a reference point an infinite distance away. The
definition of the potential differencein terms of the absolute potentials at
the starting and ending points of the path shows that the potential
difference between any two points is independent of the path taken
between the points.

For aclosed path (point A = point B), thelineintegral of the electric
field yields the potential difference between a point and itself yielding a
value of zero.

fE'dlzo

Vector fields which have zero-valued closed path line integrals are
designated as conservativefields. All eectrostatic fields are conservative
fields.
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Example (Potential difference)

Determinetheabsolute potential in the e ectric field of apoint charge

Q located at the coordinate origin.

The dectric field of a point
charge at theoriginis

E. O

4te r
[0

2ar

The potential difference between two
points A and B in the eectric field of
the point chargeis

B B
Vg = —fE-dlzdez V.-V,
A A

If we choose an inward radial path from r=r, to r =rg, the vector

differential lengthis

dl=dla,=(-dr)(-a,)=dra,

which yields
0 _
Vip=- a |-(dra,)= -
4B !(4neor )
A
= — Q _i - Q ;—;
e, | r dme, |ry, 1,

The absolute potential at point B is found by taking the limit as r,

approaches infinity.
1 1

Fp Ty

lim

— 00

T _ 9
Vg = lim Vg = Ire

Ty Ty

42
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Potentials of Charge Distributions

The previous formula can be generalized as the absolute potential of
apoint charge at the origin (let rg =r).

V= Q (Absolute potential for a
41te 7 point charge at the origin)
o

Note that the potential distribution of the point charge exhibits spherical
symmetry just like the eectric field. The potential of the point charge
varies as r ! in comparison to the electric field of a point charge which
varies as r 2. Surfaces on which the potential is constant are designated
asequipotential surfaces. Equipotential surfacesarealwaysperpendicular
to the dectric field (since no work is performed to move a charge
perpendicular to the electric field). For the point charge, the equipotential
surfaces are concentric spherical surfaces about the point charge.
The absolute potential of a point charge at an arbitrary location is

V= Q (Absolute potentia for a point
charge at an arbitrary location)

e |r-r|

-
)

Theprincipleof superposition can beapplied to the determinethepotential

due to a set of point charges which yields

N
1 Oy (Absolute potential of a

V= .
/ set of point charges
4me, k-1 I=A P ges)

Thepotentialsdueto line, surfaceand volumedistributionsof charge
arefound by integrating theincremental potential contribution dueto each
differential element of charge in the distribution.
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V(r) = Q0
(r) 4me R
R=|r-7|

Line Charge (p, dl ‘= Q)

dl’
dv(r) = P
4neoR
pry = [P
4Te, 7 R

Surface Charge (psds’= Q)

/

pds
4neoR

V(r) = 4;60 {f% s/

dV(r) =

Volume Charge (p,dv’+= Q)

/

p,dv
4me, R

1 p
V(r) = 4n€0f£f% »

dv(r) =

44

z
0
\ rfr,
I
r/
r
y
X
z
Pr
dl’ ,
r-r
I
r/
r
Yy
X
z
dS, pS
r-r
P
r/
r
J)
X
z
dv/ pV
r-r
P
r/

J)
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Example (Potential dueto aline charge)

Determinethepotential in the x-y plane dueto auniform line charge
of length 2a lying along the z-axis and centered at the coordinate origin

SR LY
z=a 4n60L R
dl'}
\ry dl’ = dz’
r=pa
N e
______ TNy -- r=za,
P
X Pe R=r—/=pap—z%z
z=-a
R=|R|=\z'*+p?

a

/ a /

- P f dz _(2) P f dz
4Te ) 4e

o _gyz'"+p o0 \z'"+p

Even integrand
Symmetric limits

x2 +a 2
Pz 2 S
V= In[z/+yz*+p?] = L {m{a+ch+pq—lnp}
2TeE, 0 2me,
[ A2 2 (Absolute potential in the x-y plane due to a
PL In arypra uniform line charge of length 2a lying along

2T €, P the z-axis centered at the coordinate origin)
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Example (Potential due to a square loop)

Determine the potential at the center of a square loop of side length

| which is uniformly charged. ) N

The uniformly charged square loop
can be viewed as four line charges. The
total potential at the center of theloop is
the scalar sum of the contributions from Pz
the four sides (identical scalar
contributions). Thus, the potential at P
due to one side of theloop is

/2

‘
P

2, 2
side: pL In a+\/ﬁ ClZi P:i
2neo p ) )
2 2
V. =4V =(4) Pr 112 +y (1/2)*+(1/2)
2neo 1/2

2
= P42
TE

o
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Electric Field asthe Gradient of the Potential

The potential difference between two pointsin an eectric field can
be written as the line integral of the electric field such that

B B
Vg = —fE-dlzdez V.-V,
A A

From the equation above, the
incremental change in potential along
theintegral pathis

dV =-E-dl= -E-a,dl = - Ecos0dI

where 0 is the angle between the
direction of the integral path and the
electric field. The derivative of the
potential with respect to position along
the path may be written as

d—ll/: - EcosO

Note that the potential derivative is a maximum when 6= (when the
direction of theeectric field isoppositeto thedirection of the path). Thus,

=F when O =1 (cosO=-1)

ax

av
di|

This equation shows that the

magnitude of the electric field is a

equal to the maximum space rate of

change in the potentia. The vy

direction of the electric field is the E
direction of the maximum decrease

in the potential (the electric field

adways points from a region of 1V

higher potential to aregion of lower

potential). oV
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The electric field can be written in terms of the potential as

dv dVv
E a’l( a,) I a,=-VV

where the operator “V” (ddl) is the gradient operator. The gradient
operator is a differential operator which operates on a scalar function to
yield (1) the maximum increase per unit distance and (2) the direction of
the maximum increase. Since the eectric field always points in the
direction of decreasing potential, the eectric field is the negative of the
gradient of V.

The derivativewith respect to | in the gradient operator above can be
generalized to aparticular coordinate system by including the variationin
the potential with respect to the three coordinate variables. In rectangular
coordinates,

dv v 9V oV
a —4a

vr=3 g -V 1V, IV,
dl Ox dy 7 oz
= i a + i a + i a (Gradient operator in
ox * 9y ¥ 9z ° rectangular coordinates)

The gradient operator isdefined differently in rectangular, cylindrical and
spherical coordinates. The electric field expression asthe gradient of the
potential in these coordinate systems are

E=-VV=- 8=Vax+ 8=Va +8=Va (rectangular)
Ox dy 7 oz
arv 1 oV arv g
= - — ——a, +—a cylindrical
P e )

1% 19V 1 av
—a + —a

a, + ———— spherical
or 7 r 90 ° rsin® op ° (s )
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Example (E asthegradient of V)

Given V(7,0,¢) = 1—(2)sinGCOS¢ (a) find E(r,0,¢) and (b.) E at
(2,7/2,0). r

oV 1 GV 1 GV
a a +
or ' rsin® 84)

-110sinOcos¢p — ( )a +—cos<1)a—(sm6)ae
9

10
+ ? ad)(cosd)) a,

20 . 10 10 .

_Fsmecosqm’ Fcosﬂcos¢ae+FSIH¢a¢
=E.a, v Eqag + Eya,

b.

(b) E(2,mt/2,0) = ?Oa +Oa9+0a —2—8011 (V/m)

Summary of Electric Field / Potential Relationships

V=- f E-dl Integrate E to find V

E=-VV Differentiate V' to find E
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Electric Flux Density
The electric flux density D in free space is defined as the product of
the free space permittivity (€,) and the electric field (E):
D=¢E

Given that the electric field isinversely proportional to the permittivity of
the medium, the éectric flux density is independent of the medium

properties.
pOil’lt E = Q a D = Q a
charge dme r? 4nr?
line E- P 4 D - P; 4
charge 2ne,p P 2np P

The units on eectric flux density are
F_V_ C
X =

m m m?
so that the units on electric flux density are equivalent to surface charge
density.
Thetotal electric flux (§r) passing through a surface Sis defined as
the integral of the normal component of D through the surface.

q;:UD-ds:ffD-ands:ffDnds

S S
where a, isthe unit normal to the surface Sand D,, is the component of D
normal to S. Thedirection chosen for theunit normal (oneof two possible)
defines the direction of the total flux.
For a closed surface, the total electric flux is

a - outward (total outward flux)
a, - inward (total inward flux)

v =¢Dd
f S
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Gauss'sLaw

Gauss' slaw isoneof the set of four Maxwell’ sequationsthat govern
the behavior of electromagnetic fields.

Gauss sLaw - Thetotal outward electric flux g through any closed
surface is equal to the total charge enclosed by the surface.

Gauss's law iswritten in equation form as
y = f D-ds=Q, . . (Gauss s law)
S
where ds = a,ds and a, is the outward pointing unit normal to S
Example (Gauss's law, point charge at origin)

Given apoint charge at the origin, show that Gauss' slaw isvalid on
a spherical surface (S) of radiusr..

Gauss' slaw applied to thespherical surface Ssurrounding thepoint charge
Q at the origin should yield

lIJ = fDdS = Qenclosea’ = Q
S

The eectric flux produced by Qis
p. ©

4y

a

7
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On the spherical surface Sof radiusr,, we have

D(r=r)) = 0 a, ds=rozsin0d6dd> a,
411:7’02
D-ds = Y ar] . (rozsinﬁdedd) ar): Q sin 0 dO do
Anr. 4
Q m o 2m P 27
wzf =4—6f0 ¢f051n6d8d¢ [ cos 0] O[d)] :

= 42(2)(211) =Q (charge enclosed)
T

Note the outwar d pointing normal requirement in Gauss'slaw isadirect
result of our eectric field (flux) convention.

interior positive charges -~ outward electric flux
interior negative charges - inward electric flux

By using an outward pointing normal, we obtain the correct sign on the

enclosed charge.
Gauss slaw can also beused to determinetheél ectric fields produced

by simplechargedistributionsthat exhibit special symmetry. Examples of
such chargedistributionsincludeuniformly charged spherical surfacesand

volumes.
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Example (Using Gauss's law to determineE)

Use Gauss's law to determine the vector eectric field inside and
outside a uniformly charged spherical volume of radius a.

)k r<a
Pr=10 r>a
k = constant

S - spherical surface of
radiusr = a

S, - spherical surface of
radiusr > a

S - spherical surface of
radiusr <a

Gauss' s law can be applied on S to determinethe electric field inside the
charged sphere [E(r <a)].

fDdS - Qenclosed - f pV dv
S V.
(V_=volume enclosed by S )
ds =dsa,

D-ds=¢D-a_d
f si a,ds

= fD A8 = Q ctosed
S

By symmetry,on S (and S,), D, isuniform and has only an a, component.
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fDr ds = Drfds - Dr(4TC7’2) = Qenclosed
S S

= Ifp,,dv = pVIfdv = k(%nﬂ)

k(inr3)
D, = 3 _ kr (r<a)
4y’ 3
or
D:ﬂar ZLZL . (}"<a)
3 € 3e

Gauss' slaw can beapplied on S, to determinethe eectric field outside the
charged sphere [E(r >a)].

fDr ds = Drfds - Dr(4TC7’2) = Qenclosed
S, S,

_fo.dv-p,ddv-kl? 3)
ip,,v oof i (3na

(¥ =volume enclosed by )

k(inag’) 3
D, = 3 - ra (r>a)
4mr? 372
or 3 3
D—kéa E = ka a (r>a)
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E|

ka
3¢

Electric Field for the uniformly charged
spherical volume of radius a

ka3

2
3eor
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meRTe Divergence Operator / Gauss's Law (Differential Form)

The differential form of Gauss's law is determined by applying the
integral form of Gauss slaw to adifferential volume (Av). Thedifferential
form of Gauss'slaw is defined in terms of the divergence operator. The
divergence operator isobtained by taking thelimit as Av shrinksto zero (to
the point P) of the flux out of Av divided by Av.

z
Av=AxAyA:z I A=
- -
P_(xoiyo’:o) Ay Ax
y
X
fD'ds (net flux out of Av)
Av
f D-ds
Av
DivD =V-D = lim i | erclosed | _ 0, (P)
T Av-0 Av Av-0
Gradient operator
f D-ds=Q, . . Gauss’s law (integral form)
S

V-D=p, Gauss’s law (differential form)
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Thedivergenceoperator inrectangular coordinatescan bedetermined
by performing the required integrations. The electric flux density within
the differential volume is defined by

D =Dxax+Dyay+DZaZ
while the electric flux density evaluated at the point P is defined as
D(P)= D,a +D, a, +D a,

The total flux out of the differential volume Av is

fD-ds=ffD-ds+ffD-ds+ffD-ds+ffD-ds+ ffD-ds+f D-ds

Av front back left right top bottom
Jace Jace face Jace face face

The electric flux density components can be written in terms of a Taylor
series about the point P.

82Dx (x —xo)2

+ ...
axz 21
3°D, (y-»,)

+ ...

oD
D (x)=D_+—=(x-x)+
0x

oD,
D(y)=D,+——=y-y,)+

dy dy? 2!
oD, 82DZ (Z—ZO)2
D (z)=D_+ (z-z,)+ +...
‘ “ 0z dz?2 2!

For points close to P (such as the faces on the differential volume), the
higher order termsin the Taylor series expansions become negligible such
that

oD
“(x-x,)
X

D (x)=D_+
x() xoa

oD,
D,(y)=D,+ & y-y,)

oD
0z

D (z)~D_+—=(z-z,)
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The flux densities on the six faces of the differential volume are

front face

oD
D (x, +Ax/2)~D_ z Ax
ox 2
right face
oD_ A
D.(y +Ay/2)~ D +—22)
(v, +*Ay/2) =D, 5 2
top face
oD
D (z,+Az/2)~D_, : Az
oz 2

back face aD
D (x,-Ax/2)~D_ - z Ax
ox 2
left face
D (y-Ay/2y~D -2 Ay
00 A= D,
bottom face
oD
D (z,-Az/2)=D_-—= Az
oz 2

The integrations over the six sides of the differential volumeyield

ffD ds+ffD ds = AfZAfy
front back
face face
Az Ay
"
00
ffDds ffDds AfZAfx D +
right left
face face
Az Ax
"
00
ffD ds + ffD ds = 7}76[
top bottom
face face
Ay Ax

Yo

D Ax a_dydza_

a_dydz(-a)

a, dxdza

a, “dxdz (- a)
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oD_ oD, D, oD_ oD, oD,
fD-ds: +—2+ xAyAz = +—2+ Av
: ox Jdy oz

ox Jdy oz
The divergence operator in rectangular coordinatesis then

D-ds
: , Av oD_ oD, 0D,
DivD =V-D = lim = +—Y+
Av-0 Av ox Jdy oz

Note that the divergence operator can be expressed as the dot product of
the gradient operator with the vector

0 0 0
V-D=| —a +—a +—a |- (Da +D a +D a
(axxayyazz)(xx Yoy zz)
oD oD oD
— X Yy . z
ox Jdy Oz

The same process can be applied to the differential volume element
in cylindrical and spherical coordinates. The results are shown below.

Cylindrical
oD, 0D
szli(pp)+l ¢, "z
pop P pod oz
Spherical
oD
V-D:ii( D, 1 i(Desine)+ 1 ®
r2or rsin0 00 rsin® oo
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Example (Divergence)
Given D =psinda, + pzza‘b +zcospa_ , determine p,.

1 a 10D, oD
ad) 0z

z

p,=V-D =

—;—(p smd))+—£(9 )+%(ZCOS¢)

- L2psing)+ L(0)+(cosd)
P P

=2sind +cos (C/m?)
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Divergence Theorem

The divergence theorem (Gauss' s theorem) is a vector theorem that
allows avolume integral of the divergence of a vector to be transformed
into asurfaceintegral of thenormal component of thevector, or viceverse.
Given a volume V enclosed by a surface S and a vector F defined
throughout V, the divergence theorem states

# F-ds = 7%[ (V-F)dv (Divergence theorem)
S v

Gauss' slaw can beused toillustratethevalidity of thedivergencetheorem.

# D-ds=Q, , = 7%(; p, dv =<ﬁ§€ (V-D)dv  (Gauss’s law)
S V V

Example (Divergence theorem and Gauss's law)
Using the divergence theorem, calculate the total charge within the

volumeV defined by 2<r <3, 0<0 <m/2, 0< $ <27 given an dectric flux
density defined by D =r2sind a +rsin® a; (C/m?*) by evaluating

(a') Qenclosea’ = # D -ds
S

(b) Qenclosed :ﬁ\ (VD)dV

vV
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. Z S, - outer hemispherical surface
’ (r=3,0<0<7/2, 0<p<2m)

S, - inner hemispherical surface
(r=2,0<8<m/2,0<p<2m)

.
N
-
------------

S, - flat ring
(2<r <3,0=m/2, 0< P < 2m)

spherical coordinate differential volume
dv = (dr)(rd0)(rsin0do)

@) Quretosea = fp D -ds = [[ Dy-ds, + [[ Dyds, + [[ D, -ds,
S

Sl S2 S3
On S, = D=D(r=3)=9sinda, +3sinOa, ds,=9s5in0d0dP(a )
On S, = D,=D(r=2)=4sin¢a +2sinba, ds,=4sin0d0Oddp(-a )
On S, = D,=D(0=n/2)=r’sinba +ra, ds,=rdrdd(ay)

0 0
21 /2 21 /2

Qenctosea = 81 $sinBd0ddp - 16 ¢ sin 0 dO do
tosed ff sin [{ sin

2n 3
+ffr2drd¢
0 2
3
3 2n
Qenclosed: {%] [d)] N ﬂ(z )_ Tn (C)

2
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(b.)

Qenclosed = ﬁ (VD ) dv
V

1 0, ., 1 0 :
V-D=p,=——(r°D)+ —(D,sin0®
Py rzar( g rsineae( o%in%)

(r sing) + %(rsinze)

72 7sin0 0

i(4r3sin¢)+
7?2 rsin0

=4rsin¢ +2cos® (C/m?>)

(2r sin® cos0)

2n /2 3

Qonctosed = f f f (4rsind +2cos0) r2sin 0. drdd d

2w n/2 3
4fff(r smﬂ/lz )drdOd

2n /2 3

+2[{[(rzsinecosﬁ)drd6d¢

fsinecose do = % sin?0

3

-7’3 1 )
=2(— 1| | =sin“0
Qenclosed _ 3 ] {2

2 0

2[19)(1) 25y - 38
=2 3)(2)(211) 3)n(C)

m/2

]

0
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Electric Dipole

Anelectricdipoleisformed by two point chargesof equal magnitude
and oppositesign (+Q, -Q) separated by a short distanced. The potential
at the point P due to the eectric dipoleis found using superposition.

8]

If the field point P is moved a large distance from the electric dipole (in
what is called thefar field, r >d) thelines connecting the two chargesand
the coordinate origin with the field point become nearly paralldl.

R ~r+ i’cose
2
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v O 11

4me 2
0 rz—d?coszﬁ

_ Qdcos

5 (Dipole far field potential, r > d)

4e r
(4]

The electric field produced by the electric dipoleis found by taking

the gradient of the potential.

7

_ 9d cos@i 1 ar+ii(cosﬁ)ae
dme, | or | 2 r3 00

o4 | 2 1
= cose( —3)ar+—3( sin0) a,

r ¥

41‘5607’3 far field, r > d)
If the vector dipole moment is defined as
p=pa,=Qda, (a, points from -0 to+Q)

the dipole potential and electric field may be written as

65
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‘a
- Qdcos? _ P4,

2

4te r 4te r
0] (4]

E-_P [ZCosGar + sineae]
e r’

Note that the potential and electric field of the electric dipole decay faster
than those of a point charge.

V E
point charge ~rt ~r 2
electric dipole ~r 2 ~r3

For anarbitrarily located, arbitrarily oriented dipole, thepotential can
be written as

r-r
p.( /]
fap z - |\r-7|
+0

ror P dne |r-r|

-0
N r __plr-r)
e, |r-r

| 3

(|r-7|>d)
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Energy Density in the Electric Field

The amount of work necessary to assemble a group of point charges
equals the total energy (W) stored in the resulting electric field.

Example (3 point charges)
Given asystem of 3 point charges, we can determinethetotal energy
stored in the eectric field of these point charges by determining the work

performed to assemble the charge distribution. Wefirst defineV,,, asthe
absolute potential at P, due to point charge Q...

P -4/’\\ 0

1. Bring Q, to P, (no energy required).
2. Bring Q, to P, (work = Q,V,,).
3. Bring Q; to P, (work = Q,V5,+Q5Vs,).

We =0+ (Q,Vy) + (QaVa+Q5V3)) (1)

If wereversetheorder inwhich thechargesare assembled, thetotal energy
required is the same as before.

1. Bring Q, to P, (no energy required).

2. Bring Q, to P, (work = Q,V.,).
3. Bring Q, to P, (work = Q,V,,+Q,V,5).

We =0+ (Q,Vy) + (QV,+QVys) (2)
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Adding equations (1) and (2) gives
2We = Qy(ViotVis) + Qu(Vy + V) + Q(Va +V3,) = Q) Vi + Q,V,+Q5V,

where V_, = total absolute potential at P, affecting Q,,.

We = YAQ,V,+ Q,V,+Q,V;)

In general, for asystem of N point charges, thetotal energy in the electric
fidd isgiven by

1 N
Wy = 5 E QT
k=1
For line, surface or volume charge distributions, the discrete sum total
energy formula above becomes a continuous sum (integral) over the
respective charge distribution. The point charge term is replaced by the
appropriate differential element of charge for a line, surface or volume
distribution: p dI, psdsor p, dv. Theoverall potential acting on the point
charge Q, due to the other point charges (V,) is replaced by the overall
potential (V) acting on the differential element of charge due to the rest of
the charge distribution. The total energy expressions become

W, = % [0,V (line charge)
1
W,=— Vvd f: h
£7 ff p Vds (surface charge)

W= % f f f p,Vdv  (volume charge)
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Total Energy in Terms of the Electric Field

If avolume chargedistribution p,, of finitedimensionisenclosed by
a spherical surface § of radius r,, the total energy associated with the
chargeisgiven by

= lim

r—;OO

fff p, Vv | =

Using the following vector identity,

(V-F)f=V-(fF)-F-Vf

= lim
r - 00

fff(v D)Vdv

the expression for the total energy may be written as

fff[v (VD)]dv - — fff(D VV)dv

If we apply the dlvergence theorem to the first mtegral, we find

(VD) d (D-VV)d
s [Jreva ] ff[@vna

= lim

r—»oo

= lim

r—»oo
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For each equivalent point charge (p,, dv) that makes up the volume charge
distribution, the potential contribution on S variesasr ' and electric flux
density (and dectric field) contribution variesasr 2. Thus, the product of
the potential and electric flux density onthesurface S, variesas r 3. Since
theintegration over the surface provides amultiplication factor of only r?,
the surfaceintegral in the energy equation goesto zero on the surface §, of
Infiniteradius. Thisyields

W, = - %fff(D-VV)dv

wheretheintegration isapplied over all space. Thedivergenceterminthe
integrand can be written in terms of the eectric field as

E=-VV
such that the total energy (J) in the dectric fidd is

W, = %ff (D-E)dv - %fffeo(E-E)dv

- [[[eEra

Thetotal energy in the previous integral can be written as the integral of
the electric field energy density (wg) throughout the volume.

Wi [ o

Thus, the energy density in an electric field is given by

1

Wy = EeoE2 (J/m?)
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Example (Energy density / total energy in an electric field)

Given V = (x-y +xy +22) volts, determine the electrostatic energy
stored in a cube of side 2m centered at the origin.

Thedectric field isfound by taking the gradient of the potential function.

=-[(1+y)a,+(-1+x)a,+2a,]  (V/m)

The energy density in the electric field is given by

1

Wy = EGOEZ (W/m?)

E*-E-E=E;+E, +E,
~(yr 1P (1P 4 2
=(p2+2y+1)+(x2-2x+1)+ 4
=x2-2x+y2+2y+6

€
Wy = Eo(xz—2x+y2+2y+6)

Thetotal energy within the defined cubeisfound by integrating the energy
density throughout the cube.

WEszwadv = %}}} (xz—%ry2+ %6)dxdydz

-1-1-1
(Odd integrands / symmetric limits)
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€ 111
=2 (x2+y*+6)dxdydz
311
1
&l x : y’ 1+ 1
= (?J 5] st
- -1
—i i + i + :Q
= _3(2)(2) )5 @) 6(2)(2)(2)] 3 S

=236 pJ
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