Problem'30 The rectangular loop shown in Fig. 1. consists of 20 closely wrapped turns and is hinged along the *z*-axis. The plane of the loop makes an angle of 30° with the *y*-axis, and the current in the windings is 0.5 A. What is the magnitude of the torque exerted on the loop in the presence of a uniform f eld $\mathbf{B} = \hat{\mathbf{y}} 2.4$ T? When viewed from above, is the expected direction of rotation clockwise or counterclockwise?

Fig 1: Hinged rectangular loop of Problem

Solution: The magnetic torque on a loop is given by $\mathbf{T} = \mathbf{m} \times \mathbf{B}''$, where $\mathbf{m} = \mathbf{\hat{n}}NIA$. For this problem, it is given that I = 0.5 A, N = 20 turns, and $A = 0.2 \text{ m} \times 0.4 \text{ m} = 0.08 \text{ m}^2$. From the fig 1, $\mathbf{\hat{n}} = -\mathbf{\hat{x}}\cos 30^\circ + \mathbf{\hat{y}}\sin 30^\circ$. Therefore, $\mathbf{m} = \mathbf{\hat{n}}0.8 (\mathbf{A} \cdot \mathbf{m}^2) \times \mathbf{\hat{y}}2.4 \text{ T} = -\mathbf{\hat{z}}1.66 (\text{N} \cdot \text{m})$. As the torque is negative, the direction of rotation is clockwise, looking from above.

Problem'40 In a cylindrical coordinate system, a 2-m-long straight wire carrying a current of 5 A in the positive z-direction is located at r = 4 cm, $\phi = \pi/2$, and $-1 \text{ m} \le z \le 1$ m.

(a) If $\mathbf{B} = \hat{\mathbf{r}} 0.2 \cos \phi$ (T), what is the magnetic force acting on the wire?

Dr. Ahmed Abdolkhalig The University of Tobruk Department of Electrical Engineering www.ahmed.ucoz.org

- (b) How much work is required to rotate the wire once about the z-axis in the negative ϕ -direction (while maintaining r = 4 cm)?
- (c) At what angle ϕ is the force a maximum?

Solution:

(a)

$$\mathbf{F} = I\boldsymbol{\ell} \times \mathbf{B}$$

= $5\hat{\mathbf{z}} 2 \times [\hat{\mathbf{r}} 0.2 \cos \phi]$
= $\hat{\mathbf{\phi}} 2 \cos \phi.$

At $\phi = \pi/2$, $\hat{\phi} = -\hat{x}$. Hence,

$$\mathbf{F} = -\hat{\mathbf{x}} 2\cos(\pi/2) = 0.$$

(b)

$$W = \int_{\phi=0}^{2\pi} \mathbf{F} \cdot d\mathbf{l} = \int_{0}^{2\pi} \hat{\mathbf{\phi}} \left[2\cos\phi \right] \cdot (-\hat{\mathbf{\phi}}) r \, d\phi \bigg|_{r=4 \text{ cm}}$$
$$= -2r \int_{0}^{2\pi} \cos\phi \, d\phi \bigg|_{r=4 \text{ cm}} = -8 \times 10^{-2} \left[\sin\phi \right]_{0}^{2\pi} = 0.$$

The force is in the $+\hat{\phi}$ -direction, which means that rotating it in the $-\hat{\phi}$ -direction would require work. However, the force varies as $\cos \phi$, which means it is positive

when $-\pi/2 \le \phi \le \pi/2$ and negative over the second half of the circle. Thus, work is provided by the force between $\phi = \pi/2$ and $\phi = -\pi/2$ (when rotated in the $-\hat{\phi}$ -direction), and work is supplied for the second half of the rotation, resulting in a net work of zero.

(c) The force **F** is maximum when $\cos \phi = 1$, or $\phi = 0$.

Problem'30'''' A 20-turn rectangular coil with side l = 20 cm and w = 10 cm is placed in the *y*-*z* plane as shown in Fig.3.

Fig 3: Rectangular loop

(a) If the coil, which carries a current I = 10 A, is in the presence of a magnetic f ux density

$$\mathbf{B} = 2 \times 10^{-2} (\hat{\mathbf{x}} + \hat{\mathbf{y}}2) \quad (\mathrm{T}),$$

determine the torque acting on the coil.

- (b) At what angle ϕ is the torque zero?
- (c) At what angle ϕ is the torque maximum? Determine its value.

Solution:

(a) The magnetic feld is in direction $(\hat{\mathbf{x}} + \hat{\mathbf{y}}2)$, which makes an angle $\phi_0 = \tan^{-1}\frac{2}{1} = 63.43^{\circ}$.

The magnetic moment of the loop is

$$\mathbf{m} = \hat{\mathbf{n}}NIA = \hat{\mathbf{n}}20 \times 10 \times (30 \times 10) \times 10^{-4} = \hat{\mathbf{n}}6 \quad (A \cdot m^2),$$

Dr. Ahmed Abdolkhalig The University of Tobruk Department of Electrical Engineering www.ahmed.ucoz.org

Fig 4. (a) Direction of **B**.

where $\hat{\mathbf{n}}$ is the surface normal in accordance with the right-hand rule. When the loop is in the negative-*y* of the *y*-*z* plane, $\hat{\mathbf{n}}$ is equal to $\hat{\mathbf{x}}$, but when the plane of the loop is moved to an angle ϕ , $\hat{\mathbf{n}}$ becomes

$$\hat{\mathbf{n}} = \hat{\mathbf{x}} \cos \phi + \hat{\mathbf{y}} \sin \phi,$$

$$\mathbf{T} = \mathbf{m} \times \mathbf{B} = \hat{\mathbf{n}} 6 \times 2 \times 10^{-2} (\hat{\mathbf{x}} + \hat{\mathbf{y}} 2)$$

$$= (\hat{\mathbf{x}} \cos \phi + \hat{\mathbf{y}} \sin \phi) 6 \times 2 \times 10^{-2} (\hat{\mathbf{x}} + \hat{\mathbf{y}} 2)$$

$$= \hat{\mathbf{z}} 0.12 [2 \cos \phi - \sin \phi] \quad (N \cdot m).$$

(b) The torque is zero when

 $2\cos\phi - \sin\phi = 0$,

or

$$\tan \phi = 2$$
, $\phi = 63.43^{\circ} \text{ or } -116.57^{\circ}$.

Thus, when $\hat{\mathbf{n}}$ is parallel to \mathbf{B} , $\mathbf{T} = 0$.

(c) The torque is a maximum when $\hat{\mathbf{n}}$ is perpendicular to **B**, which occurs at

$$\phi = 63.43 \pm 90^{\circ} = -26.57^{\circ} \text{ or } + 153.43^{\circ}$$

Mathematically, we can obtain the same result by taking the derivative of T and equating it to zero to f nd the values of ϕ at which |T| is a maximum. Thus,

$$\frac{\partial T}{\partial \phi} = \frac{\partial}{\partial \phi} \left(0.12 (2\cos\phi - \sin\phi) \right) = 0$$

Dr. Ahmed Abdolkhalig The University of Tobruk Department of Electrical Engineering www.ahmed.ucoz.org

or

$$-2\sin\phi+\cos\phi=0,$$

which gives $tan \phi = -\frac{1}{2}$, or

$$\phi = -26.57^{\circ} \text{ or } 153.43^{\circ},$$

at which $\mathbf{T} = \hat{\mathbf{z}} 0.27$ (N·m).