
Chapter2

Sections-1: Charge and Current Distributions

Problem.1 A cube 2 m on a side is located in the f rst octant in a Cartesian
coordinate system, with one of its corners at the origin. Find the total charge
contained in the cube if the charge density is given by ρv � xy2e � 2z (mC/m3).
Solution: For the cube shown in Fig. P.1,

Q � �
V

ρv dV � � 2

x � 0

� 2

y � 0

� 2

z � 0
xy2e � 2z dx dy dz

� � � 1
12

x2y3e � 2z 
 �����

2

x � 0
�����

2

y � 0
�����

2

z � 0

� 8
3
�
1 � e � 4 ��� 2  62 mC 

2 m

0

2 m

2 m y

z

x

Figure P.1: Cube of Problem.1

Problem.2 Find the total charge contained in a cylindrical volume def ned by
r

� 2 m and 0 �
z

� 3 m if ρv � 20rz (mC/m3).
Solution: For the cylinder shown in Fig. P.2,

Q � � 3

z � 0

� 2π

φ � 0

� 2

r � 0
20rz r dr dφ dz

� �
10
3

r3φz2 
 �����

2

r � 0
�����

2π

φ � 0
�����

3

z � 0

� 480π (mC) � 1  5 C 
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Figure P.2: Cylinder of Problem.2

Problem.3 Find the total charge contained in a cone def ned by R
� 2 m and

0 � θ � π � 4, given that ρv � 10R2 cos2 θ (mC/m3).

Solution: For the cone of Fig. P.3,

Q � � 2π

φ � 0

� π � 4
θ � 0

� 2

R � 0
10R2 cos2 θ R2 sinθ dR dθ dφ

� � � 2
3

R5φcos3 θ 
 �����

2

R � 0
�����

π � 4
θ � 0

�����

2π

φ � 0

� 128π
3

��
1 �

� � 2
2 � 3

��
� 86  65 (mC) 
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Figure P.3: Cone of Problem.3

Problem.4 If the line charge density is given by ρl � 24y2 (mC/m), f nd the total
charge distributed on the y-axis from y � � 5 to y � 5.

Solution:

Q � � 5

� 5
ρl dy � � 5

� 5
24y2 dy � 24y3

3 ����

5

� 5
� 2000 mC � 2 C 

Problem.5 Find the total charge on a circular disk def ned by r
�

a and z � 0 if:
(a) ρs � ρs0 cos φ (C/m2),
(b) ρs � ρs0 sin2 φ (C/m2),
(c) ρs � ρs0e � r (C/m2),
(d) ρs � ρs0e � r sin2 φ (C/m2),

where ρs0 is a constant.

Solution:
(a)

Q � �
ρs ds � � a

r � 0

� 2π

φ � 0
ρs0 cosφ r dr dφ � ρs0

r2

2 ����

a

0
sinφ ����

2π

0
� 0 

(b)

Q � � a

r � 0

� 2π

φ � 0
ρs0 sin2 φ r dr dφ � ρs0

r2

2 ����

a

0

� 2π

0

�
1 � cos2φ

2 
 dφ

� ρs0a2

4

�
φ � sin2φ

2 
 ����

2π

0
� πa2

2
ρs0 



(c)

Q � � a

r � 0

� 2π

φ � 0
ρs0e � rr dr dφ � 2πρs0

� a

0
re � r dr

� 2πρs0
� � re � r � e � r � a

0� 2πρs0 � 1 � e � a � 1 	 a ��� 
(d)

Q � � a

r � 0

� 2π

φ � 0
ρs0e � r sin2 φ r dr dφ

� ρs0

� a

r � 0
re � r dr

� 2π

φ � 0
sin2 φ dφ

� ρs0 � 1 � e � a � 1 	 a ��� � π � πρs0 � 1 � e � a � 1 	 a ��� 
Problem.6 If J � ŷ4xz (A/m2), f nd the current I f owing through a square with
corners at

�
0 � 0 � 0 � , � 2 � 0 � 0 � , � 2 � 0 � 2 � , and

�
0 � 0 � 2 � .

Solution: the net current f owing through the square shown in Fig.
P.6 is

I � �
S

J � ds � � 2

x � 0

� 2

z � 0

�
ŷ4xz � �����

y � 0

� � ŷ dx dz ��� � x2z2 � �����

2

x � 0
�����

2

z � 0

� 16 A 

2 m

2 m

0
y

z

x

J

Figure P.6: Square surface.



Problem.7 If J � R̂5 � R (A/m2), f nd I through the surface R � 5 m.

Solution: Using Eq. (4.12), we have

I � �
S

J � ds � � 2π

φ � 0

� π

θ � 0

�
R̂

5
R 
 � � R̂R2 sinθ dθ dφ �

� � 5Rφcosθ �����
R � 5

�����

π

θ � 0
�����

2π

φ � 0

� 100π � 314  2 (A) 
Problem.8 An electron beam shaped like a circular cylinder of radius r0 carries a
charge density given by

ρv � � � ρ0

1 	 r2 
 (C/m3 � �
where ρ0 is a positive constant and the beam’s axis is coincident with the z-axis.

(a) Determine the total charge contained in length L of the beam.
(b) If the electrons are moving in the 	 z-direction with uniform speed u, determine

the magnitude and direction of the current crossing the z-plane.

Solution:
(a)

Q � � r0

r � 0

� L

z � 0
ρv dV � � r0

r � 0

� L

z � 0

� � ρ0

1 	 r2 
 2πr dr dz

� � 2πρ0L
� r0

0

r
1 	 r2 dr � � πρ0L ln

�
1 	 r2

0 � 
(b)

J � ρvu � � ẑ
uρ0

1 	 r2 (A/m2) �
I � �

J � ds

� � r0

r � 0

� 2π

φ � 0

�
� ẑ

uρ0
1 	 r2 
 � ẑr dr dφ

� � 2πuρ0

� r0

0

r
1 	 r2 dr � � πuρ0 ln

�
1 	 r2

0 � (A) 
Current direction is along � ẑ.



Section-2: Coulomb’s Law

Problem.9 A square with sides 2 m each has a charge of 40 µC at each of its four
corners. Determine the electric f eld at a point 5 m above the center of the square.

R3 
 

R2 
 

z

P(0,0,5)

y

x

R1R4

Q1(1,1,0)

Q2(-1,1,0)

Q3(-1,-1,0)

Q4(1,-1,0)

Figure P.9: Square with charges at the corners.

Solution: The distance �R � between any of the charges and point P is



�R � � � 12 	 12 	 52 � � 27.

E � Q
4πε0

�
R1

�R � 3 	 R2

�R � 3 	 R3

�R � 3 	 R4

�R � 3 �
� Q

4πε0

� � x̂ � ŷ 	 ẑ5�
27 � 3 � 2 	 x̂ � ŷ 	 ẑ5�

27 � 3 � 2 	 � x̂ 	 ŷ 	 ẑ5�
27 � 3 � 2 	 x̂ 	 ŷ 	 ẑ5�

27 � 3 � 2 �� ẑ
5Q�

27 � 3 � 2πε0
� ẑ

5 � 40 µC�
27 � 3 � 2πε0

� 1  42
πε0

� 10 � 6 (V/m) � ẑ51  2 (kV/m) 
Problem.10 Three point charges, each with q � 3 nC, are located at the corners
of a triangle in the x–y plane, with one corner at the origin, another at

�
2 cm � 0 � 0 � ,

and the third at
�
0 � 2 cm � 0 � . Find the force acting on the charge located at the origin.

Solution: the electric f eld at the origin due to the other
two point charges [Fig. P.10]:

E � 1
4πε

�
3 nC

� � x̂0  02 ��
0  02 � 3 � 	 3 nC

� � ŷ0  02 ��
0  02 � 3 � � 67  4 � x̂ 	 ŷ � (kV/m) at R � 0 

the force F � qE � � 202  2 � x̂ 	 ŷ � (µN) 
2 cm

2 cmQ
Q

Q

x

y

R2

R1

R1 = -x 2 cm^

R2 = -y 2 cm^

Figure P.10: Locations of charges in Problem.10.

Problem.11 Charge q1 � 6 µC is located at
�
1 cm � 1 cm � 0 � and charge q2

is located at
�
0 � 0 � 4 cm � . What should q2 be so that E at

�
0 � 2 cm � 0 � has no

y-component?

Solution: For the conf guration of Fig. P.11,



4 cm

1 cm

1 cm 2 cm
0 y

z

x

R2

E2
R1

E1

q1

q2

R2 = (y2 - z4) cm ^ ^

R1 = -x + y(2-1) = (-x + y) cm^ ^ ^^

Figure P.11: Locations of charges in Problem.11.

E
�
R � ŷ2cm ��� 1

4πε

�
6µC

� � x̂ 	 ŷ ��� 10 � 2�
2 � 10 � 2 � 3 � 2 	 q2

�
ŷ2 � ẑ4 ��� 10 � 2�
20 � 10 � 2 � 3 � 2 �

� 1
4πε

� � x̂21  21 � 10 � 6 	 ŷ
�
21  21 � 10 � 6 	 0  224q2 �

� ẑ0  447q2 � (V/m) 
If Ey � 0, then q2 � � 21  21 � 10 � 6 � 0  224 � � 94  69 (µC) 
Problem.12 A line of charge with uniform density ρl � 8 (µC/m) exists in air
along the z-axis between z � 0 and z � 5 cm. Find E at (0,10 cm,0).

Solution: for the line of charge shown in Fig. P.12 gives

E � 1
4πε0

�
l �

R̂ � ρl dl �

R � 2
�

R � � ŷ0  1 � ẑz

� 1
4πε0

� 0 � 05

z � 0

�
8 � 10 � 6 � �

ŷ0  1 � ẑz �
� � 0  1 � 2 	 z2 � 3 � 2 dz

� 8 � 10 � 6

4πε0

�
ŷ10z 	 ẑ

� �
0  1 � 2 	 z2 � �����

0 � 05

z � 0� 71  86 � 103 � ŷ4  47 � ẑ1  06 � � ŷ321  4 � 103 � ẑ76  2 � 103 (V/m) 



5 cm

dz

10 cm
0 y

z

x

R' = y0.1 - zz^ ^

Figure P.12: Line charge.

Problem.13 Electric charge is distributed along an arc located in the x–y plane
and def ned by r � 2 cm and 0 � φ � π � 4. If ρl � 5

�
µC/m), f nd E at

�
0 � 0 � z � and

then evaluate it at (a) the origin, (b) z � 5 cm, and (c) z � � 5 cm.

Solution: For the arc of charge shown in Fig. P.13, dl � r dφ � 0  02 dφ � and
R � � � x̂0  02cos φ � ŷ0  02sin φ 	 ẑz.

E � 1
4πε0

�
l �

R̂ � ρl dl �

R � 2� 1
4πε0

� π � 4
φ � 0

ρl

� � x̂0  02cos φ � ŷ0  02sin φ 	 ẑz �� �
0  02 � 2 	 z2 � 3 � 2 0  02 dφ

� 898  8� �
0  02 � 2 	 z2 � 3 � 2 � � x̂0  014 � ŷ0  006 	 ẑ0  78z � (V/m) 

(a) At z � 0, E � � x̂1  6 � ŷ0  66 (MV/m) 
(b) At z � 5 cm, E � � x̂81  4 � ŷ33  7 	 ẑ226 (kV/m) 
(c) At z � � 5 cm, E � � x̂81  4 � ŷ33  7 � ẑ226 (kV/m) 



2 cm

z

y

z

x

R' = - r 0.02 + zz^ ^

r2 cm = ^
π/4

r 0.02 m^ 

dz

Figure P4.13: Line charge along an arc.
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Section-3: Gauss’s Law

Problem.14 Three inf nite lines of charge, all parallel to the z-axis, are located at
the three corners of the kite-shaped arrangement shown in Fig.-14. If the



two right triangles are symmetrical and of equal corresponding sides, show that the
electric f eld is zero at the origin.

y

x

ρl ρl

-2ρl

Figure P.14: Kite-shaped arrangment of line charges for Problem.14.

Solution: The f eld due to an inf nite line of charge is given by the
present case, the total E at the origin is

E � E1 	 E2 	 E3 
The components of E1 and E2 along x̂ cancel and their components along � ŷ add.
Also, E3 is along ŷ because the line charge on the y-axis is negative. Hence,

E � � ŷ
2ρl cos θ
2πε0R1 	 ŷ

2ρl

2πε0R2


But cosθ � R1 � R2. Hence,

E � � ŷ
ρl

πε0R1

R1

R2 	 ŷ
ρl

πε0R2
� 0 

Problem.15 Three inf nite lines of charge, ρl1 � 3 (nC/m), ρl2 � � 3 (nC/m), and
ρl3 � 3 (nC/m), are all parallel to the z-axis. If they pass through the respective points



ρl3

ρl2

ρl1

R3 E1

E3

P

(a,0)

(0,-b)

(0,b)

E2

y

x

Figure P.15: Three parallel line charges.

�
0 � � b � , � 0 � 0 � , and

�
0 � b � in the x–y plane, f nd the electric f eld at

�
a � 0 � 0 � . Evaluate

your result for a � 2 cm and b � 1 cm.

Solution:

ρl1 � 3 (nC/m) �
ρl2 � � 3 (nC/m) �
ρl3 � ρl1 �
E � E1 	 E2 	 E3 

Components of line charges 1 and 3 along y cancel and components along x add.
Hence,

E � x̂
2ρl1

2πε0R1
cosθ 	 x̂

ρl2

2πε0a


with cos θ � a� a2 	 b2
and R1 � � a2 	 b2,

E � x̂3
2πε0

�
2a

a2 	 b2 � 1
a � � 10 � 9 (V/m) 



For a � 2 cm and b � 1 cm,

E � x̂1  62 (kV/m) 
Problem.16 A horizontal strip lying in the x–y plane is of width d in the
y-direction and inf nitely long in the x-direction. If the strip is in air and has a
uniform charge distribution ρs, use Coulomb’s law to obtain an explicit expression
for the electric f eld at a point P located at a distance h above the centerline of the
strip. Extend your result to the special case where d is inf nite.

� � � � � �

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�

ρs

xd

dE2

z

dE1

y

1

2
y

-y

R�
�
�

θ θ

θ0

P(0,0,h)

� � � � �

Figure P.16: Horizontal strip of charge.

Solution: The strip of charge density ρs (C/m2) can be treated as a set of adjacent line
charges each of charge ρl � ρs dy and width dy. At point P, the f elds of line charge
at distance y and line charge at distance � y give contributions that cancel each other
along ŷ and add along ẑ. For each such pair,

dE � ẑ
2ρs dycos θ

2πε0R




With R � h � cos θ, we integrate from y � 0 to d � 2, which corresponds to θ � 0 to
θ0 � sin � 1 � � d � 2 � � � h2 	 �

d � 2 � 2 � 1 � 2 � . Thus,

E � � d � 2
0

dE � ẑ
ρs

πε0

� d � 2
0

cosθ
R

dy � ẑ
ρs

πε0

� θ0

0

cos2 θ
h

� h
cos2 θ

dθ

� ẑ
ρs

πε0
θ0 

For an inf nitely wide sheet, θ0 � π � 2 and E � ẑ
ρs
2ε0

,
.

Problem.17 Given the electric f ux density

D � x̂2
�
x 	 y � 	 ŷ

�
3x � 2y � (C/m2) �

determine
(a) ρv,
(b) the total charge Q enclosed in a cube 2 m on a side, located in the f rst octant

with three of its sides coincident with the x-, y-, and z-axes and one of its
corners at the origin, and

(c) the total charge Q in the cube,

Solution:
(a) By applying

ρv � ∇ � D � ∂
∂x

�
2x 	 2y � 	 ∂

∂y

�
3x � 2y ��� 0 

(b) Integrate the charge density over the volume:

Q � �
V

∇ � DdV � � 2

x � 0

� 2

y � 0

� 2

z � 0
0 dx dy dz � 0 

(c) Apply Gauss’ law to calculate the total charge

Q � �

�
D � ds � Ffront 	 Fback 	 Fright 	 Fleft 	 Ftop 	 Fbottom �

Ffront � � 2

y � 0

� 2

z � 0

�
x̂2
�
x 	 y � 	 ŷ

�
3x � 2y � � �����

x � 2

� � x̂ dz dy �
� � 2

y � 0

� 2

z � 0
2
�
x 	 y � �����

x � 2

dz dy �
��

2z

�
2y 	 1

2
y2 
 �����

2

z � 0

��
�����

2

y � 0

� 24 �



Fback � � 2

y � 0

� 2

z � 0

�
x̂2
�
x 	 y � 	 ŷ

�
3x � 2y � � �����

x � 0

� � � x̂ dz dy �
� � � 2

y � 0

� 2

z � 0
2
�
x 	 y � �����

x � 0

dz dy � �
��

zy2 �����

2

z � 0

��
�����

2

y � 0

� � 8 �
Fright � � 2

x � 0

� 2

z � 0

�
x̂2
�
x 	 y � 	 ŷ

�
3x � 2y � � �����

y � 2

� � ŷ dz dx �
� � 2

x � 0

� 2

z � 0

�
3x � 2y � �����

y � 2

dz dx �
��

z

�
3
2

x2 � 4x 
 �����

2

z � 0

��
�����

2

x � 0

� � 4 �
Fleft � � 2

x � 0

� 2

z � 0

�
x̂2
�
x 	 y � 	 ŷ

�
3x � 2y � � �����

y � 0

� � � ŷ dz dx �
� � � 2

x � 0

� 2

z � 0

�
3x � 2y � �����

y � 0

dz dx � �
��

z

�
3
2

x2 
 �����

2

z � 0

��
�����

2

x � 0

� � 12 �
Ftop � � 2

x � 0

� 2

z � 0

�
x̂2
�
x 	 y � 	 ŷ

�
3x � 2y � � �����

z � 2

� � ẑ dy dx �
� � 2

x � 0

� 2

z � 0
0 �����

z � 2

dy dx � 0 �
Fbottom � � 2

x � 0

� 2

z � 0

�
x̂2
�
x 	 y � 	 ŷ

�
3x � 2y � � �����

z � 0

� � ẑ dy dx �
� � 2

x � 0

� 2

z � 0
0 �����

z � 0

dy dx � 0 
Thus Q � �

�
D � ds � 24 � 8 � 4 � 12 	 0 	 0 � 0 

Problem.18 Repeat Problem.17 for D � x̂xy3z3 (C/m2).

Solution:
(a) ρv � ∇ � D � ∂

∂x

�
xy3z3 ��� y3z3 

(b) Total charge Q is given by:

Q � �
V

∇ � DdV � � 2

z � 0

� 2

y � 0

� 2

x � 0
y3z3 dx dy dz � xy4z4

16 �����

2

x � 0
�����

2

y � 0
�����

2

z � 0

� 32 C 



(c) Using Gauss’ law we have

�

�
S

D � ds � Ffront 	 Fback 	 Fright 	 Fleft 	 Ftop 	 Fbottom 
Note that D � x̂Dx, so only Ffront and Fback (integration over ẑ surfaces) will contribute
to the integral.

Ffront � � 2

z � 0

� 2

y � 0

�
x̂xy3z3 � �����

x � 2

� � x̂ dy dz �
� � 2

z � 0

� 2

y � 0
xy3z3 �����

x � 2

dy dz �
��

2
�

y4z4

16 
 �����

2

y � 0

��
�����

2

z � 0

� 32 �
Fback � � 2

z � 0

� 2

y � 0

�
x̂xy3z3 � �����

x � 0

� � � x̂ dy dz ��� � � 2

z � 0

� 2

y � 0
xy3z3 �����

x � 0

dy dz � 0 
Thus Q � �

�
D � ds � 32 	 0 	 0 	 0 	 0 	 0 � 32 C 

Problem.19 Charge Q1 is uniformly distributed over a thin spherical shell of
radius a, and charge Q2 is uniformly distributed over a second spherical shell of
radius b, with b � a. Apply Gauss’s law to f nd E in the regions R � a, a � R � b,
and R � b.

Solution: Using symmetry considerations, we know D � R̂DR. From,
ds � R̂R2 sinθ dθ dφ for an element of a spherical surface. Using Gauss’s law in
integral form,

�

�
S

D � ds � Qtot �
where Qtot is the total charge enclosed in S. For a spherical surface of radius R,

� 2π

φ � 0

� π

θ � 0

�
R̂DR � � � R̂R2 sinθ dθ dφ ��� Qtot �

DRR2 � 2π � � � cos θ � π0 � Qtot �
DR � Qtot

4πR2 
we know a linear, isotropic material has the constitutive relationship
D � εE. Thus, we f nd E from D.



(a) In the region R � a,

Qtot � 0 � E � R̂ER � R̂Qtot

4πR2ε
� 0 (V/m) 

(b) In the region a � R � b,

Qtot � Q1 � E � R̂ER � R̂Q1

4πR2ε
(V/m) 

(c) In the region R � b,

Qtot � Q1 	 Q2 � E � R̂ER � R̂
�
Q1 	 Q2 �
4πR2ε

(V/m) 
Problem.20 The electric f ux density inside a dielectric sphere of radius a
centered at the origin is given by

D � R̂ρ0R (C/m2),

where ρ0 is a constant. Find the total charge inside the sphere.

Solution:

Q � �

�
S

D � ds � � π

θ � 0

� 2π

φ � 0
R̂ρ0R � R̂R2 sinθ dθ dφ ����

R � a� 2πρ0a3
� π

0
sinθ dθ � � 2πρ0a3 cosθ � π0 � 4πρ0a3 (C) 

Problem.21 In a certain region of space, the charge density is given in cylindrical
coordinates by the function:

ρv � 50re � r (C/m3 � 
Apply Gauss’s law to f nd D.

Solution:



L r

z

Figure P.21: Gaussian surface.

Method 1: Integral Form of Gauss’s Law

Since ρv varies as a function of r only, so will D. Hence, we construct a cylinder of
radius r and length L, coincident with the z-axis. Symmetry suggests that D has the
functional form D � r̂D. Hence,

�

�
S

D � ds � Q �
�

r̂D � ds � D
�
2πrL � �

Q � 2πL
� r

0
50re � r � r dr

� 100πL � � r2e � r 	 2
�
1 � e � r � 1 	 r � ��� �

D � r̂D � r̂50
�
2
r

�
1 � e � r � 1 	 r � � � re � r � 

Method 2: Differential Method

∇ � D � ρv � D � r̂Dr �
with Dr being a function of r.

1
r

∂
∂r

�
rDr ��� 50re � r �



∂
∂r

�
rDr ��� 50r2e � r �

� r

0

∂
∂r

�
rDr � dr � � r

0
50r2e � r dr�

rDr � 50 � 2 � 1 � e � r � 1 	 r � � � r2e � r � �
D � r̂rDr � r̂50

�
2
r

�
1 � e � r � 1 	 r � � � re � r � 

Problem.22 An inf nitely long cylindrical shell extending between r � 1 m and
r � 3 m contains a uniform charge density ρv0. Apply Gauss’s law to f nd D in all
regions.

Solution: For r � 1 m, D � 0.
For 1 �

r
� 3 m,

�

�
S

r̂Dr � ds � Q �
Dr � 2πrL � ρv0 � πL

�
r2 � 12 � �

D � r̂Dr � r̂
ρv0πL

�
r2 � 1 �

2πrL
� r̂

ρv0
�
r2 � 1 �
2r

� 1 �
r

� 3 m 
For r � 3 m,

Dr � 2πrL � ρv0πL
�
32 � 12 ��� 8ρv0πL �

D � r̂Dr � r̂
4ρv0

r
� r � 3 m 



L

3m

z

r

1m

Figure P.22: Cylindrical shell.

Problem.23 If the charge density increases linearly with distance from the origin
such that ρv � 0 at the origin and ρv � 40 C/m3 at R � 2 m, f nd the corresponding
variation of D.

Solution:

ρv
�
R ��� a 	 bR �

ρv
�
0 ��� a � 0 �



ρv
�
2 ��� 2b � 40 

Hence, b � 20.
ρv
�
R ��� 20R (C/m3) 

Applying Gauss’s law to a spherical surface of radius R,

�

�
S

D � ds � �
V

ρv dV �
DR � 4πR2 � � R

0
20R � 4πR2 dR � 80π

R4

4
�

DR � 5R2 (C/m2) �
D � R̂DR � R̂5R2 (C/m2) 

Section-4: Electric Potential

Problem.24 A square in the x–y plane in free space has a point charge of 	 Q at
corner

�
a � 2 � a � 2 � and the same at corner

�
a � 2 � � a � 2 � and a point charge of � Q at

each of the other two corners.
(a) Find the electric potential at any point P along the x-axis.
(b) Evaluate V at x � a � 2.

Solution: R1 � R2 and R3 � R4.

V � Q
4πε0R1 	 Q

4πε0R2 	 � Q
4πε0R3 	 � Q

4πε0R4
� Q

2πε0

�
1

R1 � 1
R3



with

R1 � � � x � a
2
� 2 	 � a

2
� 2 �

R3 � � � x 	 a
2
� 2 	 � a

2
� 2 

At x � a � 2,

R1 � a
2
�

R3 � a � 5
2

�
V � Q

2πε0

�
2
a � 2� 5a


 � 0  55Q
πε0a
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Figure P.24: Potential due to four point charges.

Problem.25 The circular disk of radius a shown in Fig. (P.25) has uniform
charge density ρs across its surface.

(a) Obtain an expression for the electric potential V at a point P
�
0 � 0 � z � on the

z-axis.
(b) Use your result to f nd E and then evaluate it for z � h. Compare your f nal

expression with result which was obtained on the basis of Coulomb’s law.

Solution:
(a) Consider a ring of charge at a radial distance r. The charge contained in

width dr is
dq � ρs

�
2πr dr ��� 2πρsr dr

The potential at P is

dV � dq
4πε0R

� 2πρsr dr

4πε0
�
r2 	 z2 � 1 � 2 

The potential due to the entire disk is

V � � a

0
dV � ρs

2ε0

� a

0

r dr�
r2 	 z2 � 1 � 2 � ρs

2ε0

�
r2 	 z2 � 1 � 2 ����

a

0
� ρs

2ε0
� � a2 	 z2 � 1 � 2 � z � 



z

P(0,0,h)
h

y

x

a

a

r

dr

dq = 2π ρs r drρs

E

Figure P.25: Circular disk of charge.

(b)

E � � ∇V � � x̂
∂V
∂x � ŷ

∂V
∂y � ẑ

∂V
∂z

� ẑ
ρs

2ε0

�
1 � z� a2 	 z2 � 

The expression for E reduces to??????????? when z � h.

�

�



�
Problem.26 For the electric dipole shown in Fig. 4-13, d � 1 cm and �E � � 4
(mV/m) at R � 1 m and θ � 0 � . Find E at R � 2 m and θ � 90 � .
Solution: For R � 1 m and θ � 0 � , �E � � 4 mV/m, we can solve for q using:

E � qd
4πε0R3

�
R̂2cos θ 	 θ̂θθsin θ � 

Hence,

�E � � �
qd

4πε0

 2 � 4 mV/m at θ � 0 � �

q � 10 � 3 � 8πε0

d
� 10 � 3 � 8πε0

10 � 2 � 0  8πε0 (C) 
Again to f nd E at R � 2 m and θ � 90 � , we have

E � 0  8πε0 � 10 � 2

4πε0 � 23
�
R̂
�
0 � 	 θ̂θθ ��� θ̂θθ

1
4

(mV/m) 



Problem.27 For each of the following distributions of the electric potential V ,
sketch the corresponding distribution of E (in all cases, the vertical axis is in volts
and the horizontal axis is in meters):

Solution:

10

-10

 E

x

3

30

-30

5 8 11 13 16

 V

x

(a)

4.20

-4.20

3 6 9 12 15

E

x

3 6 9 12 15

4

-4

V

x

(b)



3 6 12 15

2.6

-2.6

x

E

3 6 9 12 15

4

-4

V

x

9

(c)

Figure P.27: Electric potential distributions

Problem.28 Given the electric f eld

E � R̂
18
R2 (V/m) �

f nd the electric potential of point A with respect to point B where A is at 	 2 m and
B at � 4 m, both on the z-axis.

Solution:
VAB � VA � VB � � � A

B
E � dl 

Along z-direction, R̂ � ẑ and E � ẑ
18
z2 for z � 0, and R̂ � � ẑ and E � � ẑ

18
z2 for

z
� 0. Hence,

VAB � � � 2

� 4
R̂

18
z2 � ẑ dz � �

� � 0

� 4 � ẑ
18
z2 � ẑ dz 	 � 2

0
ẑ

18
z2 � ẑ dz � � 4 V 



A

B

z = 2m

z = -4m

Figure P.28: Potential between B and A.

Problem.29 An inf nitely long line of charge with uniform density ρl � 9 (nC/m)
lies in the x–y plane parallel to the y-axis at x � 2 m. Find the potential VAB at point
A
�
3 m � 0 � 4 m � in Cartesian coordinates with respect to point B

�
0 � 0 � 0 �

.

Solution: According to,

V � ρl

2πε0
ln
�

r2
r1



where r1 and r2 are the distances of A and B. In this case,

r1 � � �
3 � 2 � 2 	 42 � � 17 m �

r2 � 2 m 
Hence,

VAB � 9 � 10 � 9

2π � 8  85 � 10 � 12 ln
�

2� 17 
 � � 117  09 V 



� � � � � �

A(3, 0, 4)

z

4m

r1

B
yr2

2m

3m
x

Figure P.29: Line of charge parallel to y-axis.

Problem.30 The x–y plane contains a uniform sheet of charge with ρs1 � 0  2
(nC/m2 � and a second sheet with ρs2 � � 0  2 (nC/m2) occupies the plane z � 6 m.
Find VAB, VBC, and VAC for A

�
0 � 0 � 6 m � , B

�
0 � 0 � 0 � , and C

�
0 � � 2 m � 2 m � .

Solution: We start by f nding the E f eld in the region between the plates. For any
point above the x–y plane, E1 due to the charge on x–y plane is,,

E1 � ẑ
ρs1

2ε0


In the region below the top plate, E would point downwards for positive ρs2 on the
top plate. In this case, ρs2 � � ρs1 . Hence,

E � E1 	 E2 � ẑ
ρs1

2ε0 � ẑ
ρs2

2ε0
� ẑ

2ρs1

2ε0
� ẑ

ρs1

ε0


Since E is along ẑ, only change in position along z can result in change in voltage.

VAB � � � 6

0
ẑ

ρs1

ε0
� ẑ dz � � ρs1

ε0
z ����

6

0
� � 6ρs1

ε0
� � 6 � 0  2 � 10 � 9

8  85 � 10 � 12 � � 135  59 V 



A 6 m

B 0

x

z

y

ρs2= - 0.2 (nC/m2)

ρs1=  0.2 (nC/m2)
C (0, -2, 2)

Figure P.30: Two parallel planes of charge.

The voltage at C depends only on the z-coordinate of C. Hence, with point A being at
the lowest potential and B at the highest potential,

VBC � � 2
6

VAB � �
� � 135  59 �

3
� 45  20 V �

VAC � VAB 	 VBC � � 135  59 	 45  20 � � 90  39 V 




