Dr. Ahmed Abdolkhalig The University of Tobruk Department of Electrical Engineering www.ahmed.ucoz.org

ELECTROMAGNETICS I (EE305)

Electromagnetics (EM) - the study of electric and magnetic phenomena.

A knowledge of the fundamental behavior of *electric* and *magnetic* fields is necessary to understand the operation of such devices as resistors, capacitors, inducto rs, dio des, t ransistors, tr ansformers, m otors, r elays, transmission lines, antennas, waveguides, optical fibers and lasers.

All electromagnetic phenomena are governed by a set of equations known as *Maxwell's equations*.

Maxwell's Equations

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$$
$$\nabla \times \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t}$$
$$\nabla \cdot \boldsymbol{D} = \boldsymbol{\rho}_{v}$$
$$\nabla \cdot \boldsymbol{B} = \boldsymbol{0}$$

- -

- *E* electric field intensity
- *H* magnetic field intensity
- **D** electric flux density
- **B** magnetic flux density
- *J* current density
- ρ_{v} volume charge density

Electromagnetics I

Static fields and applications, Introduction to Maxwell's equations.

Vector Algebra

The quantities of interest appearing in Max well's equations along with other quantities encountered in the study of EM can almost always be classified as either a*scalar* or a*vector* (*tensors* are sometimes encountered in EM but will not be covered in this class).

<u>Scalar</u> - a quantity defined by magnitude only. [examples: distance (*x*), voltage (*V*), charge density (ρ_v), etc.]

<u>Vector</u> - a quantity defined by magnitude and direction. [examples: velocity (v), current (I), electric field (E), etc.]

Note that vectors are denoted by boldface. The magnitude of a vector may be a real-valued scalar or a complex-valued scalar (phasor).

Vector Addition (Parallelogram Law)

Dr. Ahmed Abdolkhalig The University of Tobruk Department of Electrical Engineering www.ahmed.ucoz.org

Vector Subtraction

Note:

- (1) The magnitude of the vector A B is the separation distance d between the points a and b located by the vectors A and B, respectively [d = |A B| = |B A|].
- (2) The vector A B is the vector pointing from *b* (origination point) to *a* (termination point).

Multiplication and Division By a Scalar

$$a(A + B) = aA + aB$$
 (Distributive law)
 $\frac{A + B}{a} = \frac{1}{a}A + \frac{1}{a}B$

Coordinate Systems

A coordinate system defines points of reference from which specific vector directions may be defined. Depending on the geometry of the application, o ne co ordinate system may lead to more efficient v ector definitions than thers. The three most commonly used coordinate systems used in t he s tudy of elec tromagnetics a re *rectangular* coordinates (or *cartesian* coordinates), *cylindrical* coordinates, and *spherical* coordinates.

Rectangular Coordinates

The r ectangular co ordinate sy stem is an *orthogonal* co ordinate system with coordinate axes defined by x, y, and z. The coordinate axes in an ort hogonal c oordinate s ystem a re m utually p erpendicular. B y convention, we choose to define rectangular coordinates as a*right-handed* coordinate system. This convention ensures that the three coordinate axes are always drawn with the same orientation no matter how the coordinate system may be rotated. If we position a right-handed screw normal to the plane containing the x and y axes, and rotate the screw in the direction of the x axis rotated toward the y axis, the direction that the screw advances defines the direction of the z axis in a right-handed coordinate system.

Component Scalars and Component Vectors

Given an arbitrary vector E in rectangular coordinates, the vector E can be described (using vector addition) as the sum of three *component* vectors that lie along the coordinate axes.

The component vectors can be further simplified by defining *unit vectors* along t he c oordinate a xes: a_x , a_y , and a_z . T hese u nit vectors h ave magnitudes of unity and directions parallel to the respective coordinate axis. The component vectors can be written in terms of the unit vectors as

Thus, using *component scalars*, any rectangular coordinate vector can be uniquely defined using three scalar quantities that represent the magnitudes of the respective component vectors.

To define a unit vector in the direction of E, we simply divide the vector by its magnitude.

$$\boldsymbol{a}_{E} = \frac{\boldsymbol{E}}{|\boldsymbol{E}|} = \frac{E_{x}\boldsymbol{a}_{x} + E_{y}\boldsymbol{a}_{y} + E_{z}\boldsymbol{a}_{z}}{\sqrt{E_{x}^{2} + E_{y}^{2} + E_{z}^{2}}} \qquad \qquad \left(\begin{array}{c} \text{unit vector in the} \\ \text{direction of } \boldsymbol{E} \end{array} \right)$$

where the magnitude of E is the diagonal of the rectangular volume formed by the three component scalars.

Example (Unit vector)

Given $\boldsymbol{E} = (\boldsymbol{x} + \boldsymbol{y})\boldsymbol{a}_x + 3\boldsymbol{a}_y + z^2 \boldsymbol{a}_z$, determine the unit vector in the direction of \boldsymbol{E} at the rectangular coordinate location of (1,1,1).

$$E_x = x + y$$

 $E_y = 3$
 $E_y = z^2$
Note that the component scalars are
functions of position (the direction of the
vector changes with position).

$$a_{E} = \frac{E}{|E|} = \frac{(x+y)a_{x}+3a_{y}+z^{2}a_{z}}{\sqrt{(x+y)^{2}+9+z^{4}}}$$

(unit vector as a function of position)

At the point (1,1,1) [x = 1, y = 1, z = 1],

$$\boldsymbol{a}_E = \frac{1}{\sqrt{14}} \left(2 \, \boldsymbol{a}_x + 3 \, \boldsymbol{a}_y + \boldsymbol{a}_z \right)$$

Example (Vector addition)

An airplane with a ground speed of 350 km/hr heading due west flies in a wind blowing to the northwest at 40 km/hr. Determine the true air speed and heading of the airplane.

$$v_g = 350(-a_x) = -350 a_x$$

$$v_w = 40\cos 45^o(-a_x) + 40\sin 45^o(a_y) = -28.3 a_x + 28.3 a_y$$

$$v_a = v_g + v_w = -350 a_x - 28.3 a_x + 28.3 a_y = -378.3 a_x + 28.3 a_y$$

$$|v_a| = \sqrt{(378.3)^2 + (28.3)^2} = 379.4 \text{ km/hr}$$

$$\theta = \tan^{-1} \frac{28.3}{378.3} = 4.28^o \text{ north of west}$$

Dot Product (Scalar Product)

The *dot product* of two vectors A and B (denoted by $A \cdot B$) is defined as the product of the vector magnitudes and the cosine of the smaller angle between them.

The dot product is commonly used to determine the component of a vector in a particular direction. The dot product of a vector with a unit vector yields the component of the vector in the direction of the unit vector. Given two vectors A and B with corresponding unit vectors a_A and a_B , the component of A in the direction of B (the *projection* of A onto B) is found evaluating the dot product of A with a_B . Similarly, the component of B in the direction of A (the *projection* of B onto A) is found evaluating the dot product of B with a_A .

The dot product can be expressed independent of angles through the use of component vectors in an orthogonal coordinate system.

$$A = A_x a_x + A_y a_y + A_z a_z$$
$$B = B_x a_x + B_y a_y + B_z a_z$$
$$A \cdot B = (A_x a_x + A_y a_y + A_z a_z) \cdot (B_x a_x + B_y a_y + B_z a_z)$$
$$= A_x B_x a_x \cdot a_x + A_x B_y a_x \cdot a_y + A_x B_z a_x \cdot a_z$$
$$+ A_y B_x a_y \cdot a_x + A_y B_y a_y \cdot a_y + A_y B_z a_y \cdot a_z$$
$$+ A_z B_x a_z \cdot a_x + A_z B_y a_z \cdot a_y + A_z B_z a_z \cdot a_z$$

The dot product of like unit vectors yields one ($\theta_{AB} = 0^{\circ}$) while the dot product of unlike unit vectors ($\theta_{AB} = 90^{\circ}$) yields zero. The dot product results are

$$a_x \cdot a_x = 1 \qquad a_x \cdot a_y = 0 \qquad a_x \cdot a_z = 0$$
$$a_y \cdot a_x = 0 \qquad a_y \cdot a_y = 1 \qquad a_y \cdot a_z = 0$$
$$a_z \cdot a_x = 0 \qquad a_z \cdot a_y = 0 \qquad a_z \cdot a_z = 1$$

The resulting dot product expression is

$$\boldsymbol{A} \cdot \boldsymbol{B} = A_x B_x + A_y B_y + A_z B_z$$

Cross Product (Vector Product)

The *cross product* of t wo vectors A and B (denoted by $A \times B$) is defined as the product of the vector magnitudes and the sine of the smaller angle between them with a vector direction defined by the *right hand rule*.

- $\boldsymbol{A} \times \boldsymbol{B} = |\boldsymbol{A}| |\boldsymbol{B}| \sin \theta_{AB} \boldsymbol{a}_n = AB \sin \theta_{AB} \boldsymbol{a}_n$
- $A \times B = -B \times A$ (not commutative)

- Note: (1) the unit vector \boldsymbol{a}_n is normal to the plane in which \boldsymbol{A} and \boldsymbol{B} lie.
 - (2) $AB\sin\theta_{AB}$ = area of the parallelogram formed by the vectors **A** and **B**.

Using c omponent vectors, the c ross p roduct of A and B may be written as

$$A = A_x a_x + A_y a_y + A_z a_z$$
$$B = B_x a_x + B_y a_y + B_z a_z$$
$$A \times B = (A_x a_x + A_y a_y + A_z a_z) \times (B_x a_x + B_y a_y + B_z a_z)$$
$$= A_x B_x a_x \times a_x + A_x B_y a_x \times a_y + A_x B_z a_x \times a_z$$
$$+ A_y B_x a_y \times a_x + A_y B_y a_y \times a_y + A_y B_z a_y \times a_z$$
$$+ A_z B_x a_z \times a_x + A_z B_y a_z \times a_y + A_z B_z a_z \times a_z$$

The cross product of like unit vectors yields zero ($\theta_{AB} = 0^\circ$) while the cross product of unlike unit vectors ($\theta_{AB} = 90^\circ$) yields another unit vector which is determined according to the right hand rule. The cross products results are

$$a_{x} \times a_{x} = 0 \qquad a_{x} \times a_{y} = a_{z} \qquad a_{x} \times a_{z} = -a_{y} \qquad a_{z} \wedge a_{y} \times a_{x} = -a_{z} \qquad a_{y} \times a_{y} = 0 \qquad a_{y} \times a_{z} = a_{x} \qquad a_{z} \times a_{x} = a_{y} \qquad a_{z} \times a_{y} = -a_{x} \qquad a_{z} \times a_{z} = 0 \qquad a_{x} \wedge a_{z} \wedge a_{z} \wedge a_{z} = 0$$

The resulting cross product expression is

$$\boldsymbol{A} \times \boldsymbol{B} = (A_y B_z - A_z B_y) \boldsymbol{a}_x + (A_z B_x - A_x B_z) \boldsymbol{a}_y + (A_x B_y - A_y B_x) \boldsymbol{a}_z$$

This cross product result can also be written compactly in the form of a determinant as

$$\boldsymbol{A} \times \boldsymbol{B} = \begin{vmatrix} \boldsymbol{a}_{x} & \boldsymbol{a}_{y} & \boldsymbol{a}_{z} \\ \boldsymbol{A}_{x} & \boldsymbol{A}_{y} & \boldsymbol{A}_{z} \\ \boldsymbol{B}_{x} & \boldsymbol{B}_{y} & \boldsymbol{B}_{z} \end{vmatrix}$$

Example (Dot product / Cross product)

Given $E = 3a_y + 4a_z$ and $F = 4a_x - 10a_y + 5a_z$, determine

- (a.) the vector component of E in the direction of F.
- (b.) a unit vector perpendicular to both E and F.
- (a.) To find the vector component of E in the direction of F, we must dot the vector E with the unit vector in the direction of F.

$$\boldsymbol{a}_{F} = \frac{\boldsymbol{F}}{|\boldsymbol{F}|} = \frac{4\,\boldsymbol{a}_{x} - 10\,\boldsymbol{a}_{y} + 5\,\boldsymbol{a}_{z}}{\sqrt{4^{2} + 10^{2} + 5^{2}}} = \frac{1}{\sqrt{141}} (4\,\boldsymbol{a}_{x} - 10\,\boldsymbol{a}_{y} + 5\,\boldsymbol{a}_{z})$$

The dot product of E and a_F is

$$E \cdot a_F = (3 a_y + 4 a_z) \cdot \frac{1}{\sqrt{141}} (4 a_x - 10 a_y + 5 a_z)$$
$$= \frac{1}{\sqrt{141}} [(3)(-10) + (4)(5)] = -\frac{10}{\sqrt{141}}$$

(Scalar component of E along F)

Dr. Ahmed Abdolkhalig The University of Tobruk Department of Electrical Engineering www.ahmed.ucoz.org

The vector component of E along F is

$$(\boldsymbol{E} \cdot \boldsymbol{a}_F) \boldsymbol{a}_F = -\frac{10}{141} (4 \boldsymbol{a}_x - 10 \boldsymbol{a}_y + 5 \boldsymbol{a}_z)$$

(b.) To find a unit v ector normal to both E and F, we use the cross product. The result of the cross product is a vector which is normal to both E and F.

$$\boldsymbol{E} \times \boldsymbol{F} = \begin{vmatrix} \boldsymbol{a}_{x} & \boldsymbol{a}_{y} & \boldsymbol{a}_{z} \\ 0 & 3 & 4 \\ 4 & -10 & 5 \end{vmatrix} = (55 \, \boldsymbol{a}_{x} + 16 \, \boldsymbol{a}_{y} - 12 \, \boldsymbol{a}_{z})$$

We then divide this vector by its magnitude to find the unit vector.

$$\boldsymbol{a}_{n} = \frac{\boldsymbol{E} \times \boldsymbol{F}}{|\boldsymbol{E} \times \boldsymbol{F}|} = \frac{55\,\boldsymbol{a}_{x} + 16\,\boldsymbol{a}_{y} - 12\,\boldsymbol{a}_{z}}{\sqrt{55^{2} + 16^{2} + 12^{2}}} = \frac{1}{\sqrt{3425}}(55\,\boldsymbol{a}_{x} + 16\,\boldsymbol{a}_{y} - 12\,\boldsymbol{a}_{z})$$

The negative of this unit vector is also normal to both E and F.